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Adaptive management in crop pest control in the face of climate variability:
an agent-based modeling approach
François Rebaudo 1,2 and Olivier Dangles 3,4

ABSTRACT. Climate changes are occurring rapidly at both regional and global scales. Farmers are faced with the challenge of
developing new agricultural practices to help them to cope with unpredictable changes in environmental, social, and economic
conditions. Under these conditions, adaptive management requires a farmer to learn by monitoring provisional strategies and changing
conditions, and then incrementally adjust management practices in light of new information. Exploring adaptive management will
increase our understanding of the underlying processes that link farmer societies with their environment across space and time, while
accounting for the impacts of an unpredictable climate. Here, we assessed the impacts of temperature and crop price, as surrogates for
climate and economic changes, on farmers’ adaptive management in crop pest control using an agent-based modeling approach. Our
model simulated an artificial society of farmers that relied on field data obtained in the Ecuadorian Andes. Farmers were represented
as heterogeneous autonomous agents who interact with and influence each other, and who are capable of adapting to changing
environmental conditions. The results of our simulation suggest that variable temperatures led to less effective pest control strategies
than those used under stable temperatures. Moreover, farmers used information gained through their own past experience or through
interactions with other farmers to initiate an adaptive management approach. At a broader scale, this study generates more than an
increased understanding of adaptive management; it highlights how people depend on one another to manage common problems.
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INTRODUCTION
Rapid and unpredictable change in climate at both regional and
global scales is forcing agro-ecosystem stakeholders to develop
new management practices (Perez et al. 2010). Conventional
management practices have typically assumed that environmental
and socioeconomic contexts will be predictable and roughly the
same over long periods (Darnhoffer et al. 2010). Existing
management practices will work well under this assumption (Shea
et al. 2002). However, under conditions where social, economic,
and ecological factors change rapidly or are unpredictable, steady-
state management is no longer adequate (Susskind et al. 2012).
Farmers must cope with sources of uncertainty to keep their farm
sustainable and to maintain food security (Darnhoffer et al.
2010).  

Adaptive management (AM) is “a systematic process for
continually improving management policies and practices by
learning from the outcomes of previously employed policies and
practices” (MEA 2005). AM provides a way to adjust to change
and uncertainty. Under AM, farmers learn by monitoring
provisional strategies and changing conditions, and then make
incremental adjustments to their management practices in
response to what they have learned (Susskind et al. 2012). The
concept of AM emerged by the late 1970s as a way to improve
natural resource management (Holling 1978). However, it is only
relatively recently that AM has been applied to crop protection
issues (Lewis et al. 1997, Shea et al. 2002).  

Shea et al. (2002), in their seminal paper, convincingly state that
AM is one of the best ways to control pests in the face of
uncertainty. Most small-scale farmers do learn from the results
of their own previous attempts at pest control. But they generally

lack a framework for learning about the overall managed system,
which they need to do to improve pest control at broad spatial
and temporal scales. Although traditional farming communities
are generally very resilient (Perez et al. 2010), unprecedented
climatic and economic changes may push them beyond their range
of adaptability. AM may provide useful new ways for them to
adjust to change and uncertainty.  

Agro-ecosystems are social-ecological systems in which humans
play a key role in managing the landscape and affecting its spatio-
temporal dynamics (Cabell and Oelofse 2012, Rounsevell et al.
2012). Research on AM in pest control must consider the intricate
interactions between climatic (e.g., temperature), ecological (e.g.,
pest population dynamics), and socioeconomic systems.  

Agent-based models (ABMs) provide an ideal methodological
framework to represent coupled systems (Liu et al. 2007) and to
integrate a dimension that represents farmers’ decision making,
which is central to AM (An 2012). In ABM, agents are
heterogeneous and autonomous entities that interact with one
another, which is suitable to explicitly represent the complexity
of decision making (Watkins et al. 2013). Thus, ABMs make it
possible to formalize and test hypotheses about the conditions
under which complex patterns in management practices can
emerge from a set of observed behavior-response functions
(Zellner 2008, Rounsevell et al. 2012). ABMs have been applied
to a variety of situations over the last 20 to 30 years, such as
systems affected by land use and changes in land cover (e.g.,
Parker et al. 2003, Matthews et al. 2007) and resource
management and conservation (e.g., Boone et al. 2011, Parrott et
al. 2012, Watkins et al. 2013). Although a few studies have focused
on agricultural systems (e.g., Berger 2001, Happe et al. 2006,
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Speelman and García-Barrios 2010, Schreinemachers and Berger
2011, Astier et al. 2012), little attention has been paid to
agricultural pest management (Carrasco et al. 2010, 2012,
Rebaudo and Dangles 2011, 2013).  

Here, we assessed the impacts of climatic and economic variability
on farmers’ adaptive management in agricultural pest control in
the Ecuadorian Andes. As a study model, we used the potato tuber
moth Tecia solanivora, an invasive species from Guatemala that
was introduced to South America via infested potato seeds that
were likely imported from Costa Rica in the late 1990s (Torres-
Leguizamón et al. 2011). Because of its economic importance and
its ability to successfully invade new production areas of the
Ecuadorian Andes, T. solanivora represents one of the major pest
problems in the region (Dangles et al. 2009, Crespo-Pérez et al.
2011).  

T. solanivora is an excellent candidate to develop an ABM of AM
in pest control for two main reasons: (1) its population dynamics
have already been documented and implemented into spatially-
explicit landscape models (Crespo-Pérez et al. 2011) and (2) the
decision-making processes that farmers are using to control it
have been studied in detail (Dangles et al. 2010, Paredes 2010,
Rebaudo and Dangles 2011).  

The main objective of our study was to examine how climatic and
economic variability, represented as fluctuations in temperature
and crop price around a steady mean, affected pest management
practices of individual farmers and subsequent pest control
strategies at the community level. We developed an ABM to
simulate an artificial society of farmers in an Ecuadorian agro-
ecosystem, parameterized with field data. We then used this model
to explore farmers’ use of AM, i.e., their capacity to adapt their
pest management practices under uncertainty, through different
scenarios of climatic and economic variability. We were
particularly interested in exploring AM at the community level,
as a collective measure of AM by individual farmers. We conclude
with a discussion of our findings and highlight implications for
adaptive management in pest control.

METHODS
Our simulations were performed using an ABM that allowed us
to represent (1) a heterogeneous agricultural landscape, (2) crop
pest population dynamics, and (3) humans managing their crops
(Filatova et al. 2013). This social-ecological system was subject
to both climatic and economic variability, represented as
fluctuations in temperature and crop price around a steady mean.
The variability fed into farmers’ pest management practices,
which could lead them to improve their crop production. Farmers
responded to pest damages with different behaviors based on their
perceptions, experiences, and their personal representation of the
system (mental model, see Jones et al. 2011). A representation of
the model structure is provided in Figure 1, including the
landscape, pest, human, and economic submodels.  

The overall model initializes with the landscape submodel, on
which farmers are located together with the crop pests. Each time
step in the model includes the following processes: (1) economic
and climatic variability, (2) pest reproduction, (3) farmers’ success
at controlling pests (pest control) and adaptive management, (4)
pest dispersion. The source code and the documentation of the
model-following the ODD protocol (Grimm et al. 2010) and the
ODD+D protocol (Müller et al. 2013) are available on the

openabm.org platform (https://www.openabm.org/model/4128/,
model MANPEST). The model was implemented using the
multiagent programmable modeling environment NetLogo
version 5.1.0 (Wilensky 1999). Analyses were performed using R
software (R Core Team 2014).

The landscape submodel
We developed a spatially explicit representation of land use in an
Andean agricultural landscape in Ecuador (Crespo-Pérez et al.
2011). The agricultural landscape was divided into farm
households with an average area of 1.6 ± 1 ha, in the range of
farm households observed in the Ecuadorian Andes (Nguema et
al. 2013). The overall landscape area covered 1000 ha (2000 x 5000
m, which corresponds to around 600 farms), and was represented
as a matrix of 4000 cells (50-m resolution) using a Voronoï
tessellation (O’Sullivan and Perry 2013). We represented
temperature using two scenarios. The first scenario, referred to as
the scenario without temperature variability, relied on
temperatures in the Ecuadorian Andes for periods of six months
(one time step in the model), corresponding to 15 degrees at
around 2500 m. At this temporal scale we observed little variation
in temperatures (less than one degree), as reported by Dangles et
al. (2008, Appendix A). The second scenario, referred to as the
scenario with temperature variability, was built to obtain
temperatures outside the range of pest survival (Crespo-Pérez et
al. 2011), by randomly choosing a temperature in a Gaussian
distribution centered at 15 degrees and with a standard deviation
of 5, for each time step in the model. The landscape was considered
thermally homogeneous in space and fluctuating in time.

The pest submodel
Our pest submodel simulated the population dynamics of the
potato tuber moth Tecia solanivora (Dangles et al. 2009, Crespo-
Pérez et al. 2011). Its development is mainly driven by
temperature. The relationship between T. solanivora survival and
temperature can be fitted by a Sharpe and DeMichele model
(Dangles et al. 2008 and Fig. A1.1).  

The population dynamics of T. solanivora was modeled through
a physiologically-based model detailed in Crespo-Pérez et al.
2011. Briefly, the T. solanivora model simulates the spatiotemporal
dynamics of the pest on a spatially explicit landscape. One time
step in the model corresponds to one T. solanivora generation, or
approximately six months. This model has been validated using
four years of field data (Crespo-Pérez et al. 2011).  

The T. solanivora model was modified in this study to fit a change
in landscape scale by adapting dispersion to the landscape
resolution. The effect of landscape resolution on pest dynamics
was verified by comparing the mean dispersal distances at
different resolutions, ensuring that we reproduced the population
dynamics and spatial distribution. No significant differences were
observed between the original model and the adapted model
(Student’s t-test between the mean dispersal distances: T 
= -1.4567, df = 89.435, p-value = 0.1487).

Economic submodel (potato price variability)
The economic submodel represents the variation in potato prices,
used as a proxy for farm revenue in the human submodel (Fig. 1).
It considers the monthly potato price between 1990 and 2005 (data
from SIGAGRO, Coordinación Consejo Consultivo Papa).
These data revealed an increase in prices from 1990 to 2005 (linear
regression, F = 18.6, df = 1/190, p-value < 0.05). Because we were
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Fig. 1. Representation of the model structure (nonformal graphics). The underlying model is composed of a network of
interacting farmers who are capable of learning and adapting to circumstances. They work on farms that are facing the
impact of an agricultural pest that evolves. The model includes (1) a landscape submodel, which represents the landscape
characteristics and climatic condition, (2) an economic submodel that generates the potato price, (3) a pest submodel, which
simulates the pest population dynamics, and (4) a human submodel, which represents farmers who are dealing with the pest
and using adaptive management. The grey boxes represent input and output variables and grey stars the analyzed input
variables (temperature variability and potato price fluctuation).

interested in testing the effect of economic variability (random
component of potato price time series, see Fig. A1.2), we used an
additive model to fit the data (Cowpertwait and Metcalfe 2009).
By normalizing and decomposing the time series biannually to
subtract the trend, we obtained the expected variation in potato
price over time. The potato price standard deviation was 26.7 for
a mean value of 100 (CI95% = [89.7; 109.6]), with a Gaussian-like
distribution (Shapiro-Wilk normality test over the random
component of the potato price: W = 0.96; p-value = 0.38). We
used this distribution to simulate economic variability. We
assumed that potato prices had no influence on whether farmers
decided to plant potatoes, i.e., the same areas were cultivated each
year.

The human submodel

Farmers’ pest management practices and their success at pest
control
We represented an artificial society of Ecuadorian famers (potato
growers) who had to face an invasive agricultural pest for which
optimal pest management practices were virtually unknown.

Farmers were initialized individually with a set of pest
management practices, which determined their ability to control
the pest. The pest management practices were set to reproduce
observed pest control in the Ecuadorian Andes. This human
submodel interacted with the pest submodel, as pest population
dynamics depended on both human pest management strategies
and on temperature.  

In our simulations, farmers were set with limited cognitive
resources (Jager et al. 2000). They could not distinguish between
outcomes attributable to pest management practices and those
attributable to climatic variability. When farmers’ revenue or pest
infestation levels were no longer satisfactory, they adapted their
pest management practices based on information from other
farmers or on their own past experience.  

As previously shown by Rebaudo and Dangles (2011), the specific
management practices used by Ecuadorian farmers influences
how well T. solanivora is controlled. For example, high potato
ridging more effectively controls potato moth larvae than does
low ridging. This example suggests that, to a certain extent, the
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Table 1. Characteristics of behaviors followed by Ecuadorian farmers.
 
Farmers’ behaviors Conventional Averse to risk Experimenters Risk takers Averse to change

Short description Strategically mix
tradition with modern
practices, base
decisions on crop
monitoring
 

Use effective
techniques,
independent from
markets

Adapt through
experimentation

Take risks and
recommendations from
technicians in commercial
shops

Averse to modifying
their practices

Adaptive
management
behavior

Based on observation;
consider own farm
income in past years
and that of other
farmers

Based on validated
techniques; consider
own pest infestation in
past years and that of
other farmers

Based on
experimentation;
consider own farm pest
infestation in past years

Based on external
recommendations
(represented in the model
as experimentation);
consider farm income
 

No adaptive
management

Adaptation
(intensity of
changes)

High investment Low investment Low investment High investment No investment

effectiveness of pest management practices can be quantitatively
assessed. In our model, we quantitatively represented the set of
pest management practices as a vector of dimension N. Pest
management practices were mostly prophylactic measures, such
as cleaning store rooms, ridging potatoes, performing longer crop
rotation, but also curative measures such as using pesticides
appropriately (Dangles et al. 2010). Each pest management
practice ni corresponds to a value that can be compared to a
theoretical optimum n0, which is the maximum mortality of the
pest under a specific pest management practice.  

Equation 1 represents the mean distance between a farmer pest
management practice and the optimal pest management practice,
Δpractices. 
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Equation 2 describes how effectively farmers control T. solanivora 
(see Rebaudo and Dangles 2011). Pest control is specific to
individual farms. Farmers were randomly assigned pest
management strategies based on the known distribution of
strategies used in Ecuador. These strategies were saved at each
time step in the simulation.

Farmers’ behavior
Faced with emerging threats and associated uncertainties,
farmers’ pest management practices evolve as a self-organizing
process referred to here as AM (sensu Shea et al. 2002). In the
model, we represented AM as the farmers’ ability to change their

pest management practices. The modalities of change in pest
management practices varied according to farmers’ behaviors,
which were fixed for each individual farmer.  

In Northern Ecuador, Paredes (2010) elaborated a typology of
farmers based on their model of production, how they evaluate
success, and how they make decisions. We identified five types of
farmers: conventional, experimenters, averse to risk, risk takers,
and averse to change. All behaviors coexist in a community of
farmers, but one behavior was always described as dominant. See
Table 1 for a comparison of the farmers’ behaviors.  

Two key features distinguish the different types of farmers: (1)
what information they use to make pest management decisions
and (2) how they evaluate whether their pest management
practices have been successful. The information that farmers use
to decide whether and how to change their pest management
practices can come either from observing other farmers or from
evaluating their own past success. Conventional and averse-to-
risk farmers base their pest management decisions on their
perception of others farmers’ individual success. They will first
assess whose example to follow, then will change pest management
practices based on their observations. In contrast, experimenters
and risk takers base their pest management decisions on their own
individual success. They first assess the success of their past
practices, and compare that to the success of current practices.
They keep the practices they perceive to be the most effective to
try during the next crop cycle.  

Many farmers, in our case, experimenters and averse-to-risk
farmers, estimate the effectiveness of pest control measures
indirectly. They can use surrogates such as the abundance of pests
in the field (Railsback and Johnson 2011) or the amount of pest
damage (Karp et al. 2013). They are described in the typology as
“independent from market.” Other farmers, in our case,
conventional farmers and risk takers, can estimate the
effectiveness of pest control using the economic return from their
crop (Below et al. 2012). Note that averse-to-change farmers do
not adapt their pest management practices, so do not need criteria
for deciding when to change or to evaluate success.
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Farmers’ perception and willingness to change
In our model, farmers were able to perceive pest infestation levels
in their own fields and in their neighbors’ fields (see Fig. 2). They
evaluated pest infestation level in neighboring farms while
sharecropping or during labor exchange arrangements, common
practices in the Ecuadorian Andes (Paredes 2010). Farmers
assessed farm revenue when they sold their crops at marketplaces,
so that farm revenue depended on overall production.

Fig. 2. Representation of adaptive management in pest control.
Farmers are located on farms that are linked to one another
through a social network made up of all neighboring farms.
The processes for adaptive management take into account a
farmers assessment of his or her own pest infestation and/or
farm revenue; a comparison with his or her personal or peers’
past success at controlling pests; and the modification of pest
management practices.

Based on field surveys performed in Ecuador by our team (O.
Dangles and F. Rebaudo, unpublished manuscript) we assumed
that each farmer could evaluate these two variables and pest
management practices over the previous two years. AM (referring
here to a modification in pest management practices), was
therefore a response to some combination of interactions among
farmers, perceptions about their own and other farmers success,
observations of pest infestations in the field, and economic
returns.

Model validation, simulations, and analyses
Our human submodel relied on qualitative descriptions based on
personal observations and a literature survey. To calibrate farmer
behaviors considering the whole model and all its submodels, we
optimized the intensity of changes in pest management practice
to reproduce the patterns quantified by Paredes (2010).
Experimenters and risk takers had higher fluctuations in their
revenue compared to averse-to-risk and conventional farmers.
This optimization ensured that the selected behaviors produced
realistic outputs (e.g., Fig. A1.3). We also checked that, within
the range of possible values for the intensity of change, the spread
of pest management practices was consistent with studies of how
agricultural information spreads (e.g., Bass model in Rebaudo
and Dangles 2011).  

Farmers’ adaptive management was defined as the set of
modifications in pest management practices that allowed farmers
to limit pest infestation and improve their farm revenue in a

context of economic and climatic (temperature) variability. We
used model simulations to evaluate the possible impacts of
temperature and economic variability on farmers’ pest control.
We simulated around 600 farmers per simulation with 30
repetitions, N = 5 pest management practices ranging from ni =
0 to 100 (no difference in model results when N > 5), compared
to a theoretical optimum n0 = 50. First, we computed farmers’
pest control over 50 years (i.e., 100 time steps using mean pest
control of all farmers with 30 simulation repetitions).  

We described the resulting curves and analyzed effects of
temperature and economic variability through an analysis of
variance of farmers’ pest control after 50 years (i.e., pest control
~ temperature variability * economic variability). We performed
this analysis for the whole community of farmers and for all sets
of farmer behaviors. The diversity of pest management practices
was represented by the standard deviation. Standard deviations
were compared for all sets of farmer behaviors after 50 years using
Student’s t-tests.

RESULTS

Impact of climatic and economic variability on farmers’ pest
control
Simulations revealed that farmers improve their pest control over
time in all scenarios (Fig. 3). However, we found that this
improvement was much less when temperature was variable
(analysis of variance on farmers’ pest control after 50 years, F =
3189, df = 1/9532, p-value < 0.05; corresponding to 10% fewer
pests). In contrast, economic variability had no significant impact
on farmers’ pest control over time (analysis of variance on
farmers’ pest control after 50 years, F = 0.4, df = 1/4764, p-value 
= 0.52). Because the scenario that included economic variability
showed no effect on pest control when compared to the scenario
without economic variability, we focused on the effect of
temperature variability.  

We assessed how different farmers’ behaviors affected how their
community used adaptive management in response to
temperature variability. For all farmers, pest control was
significantly different after 25 and 50 years (significant Student’s
pairwise t-tests between farmers’ behaviors with and without
temperature variability). The effect of temperature variability on
pest control varied with the farmers’ behavior. The averse-to-risk
farmers controlled pests most successfully under constant
conditions, but not when temperature variability was included in
the model (Fig. 3A and 3B), where conventional farmers
controlled pests most successfully. This was also true for
communities dominated by experimenters and risk takers-their
pest control strategies were less effective than those of
conventional farmers when temperature variability was included
in the model.

Impact of climatic variability on the diversity of pest
management practices
We assessed how the heterogeneity in pest management practices
in the community was affected by temperature variability.
Multiple repetitions (30) of the same simulation without
economic or temperature variability revealed that all farmer pest
control strategies were similarly effective after 50 years (CV =
0.02). We observed a higher coefficient of variation (CV = 0.08)
when including temperature variability in the model (Fig. 3).

http://www.ecologyandsociety.org/vol20/iss2/art18/
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Fig. 3. Adaptive management in pest control. Farmers’ pest
control resulting from pest management practices is represented
as a function of time without temperature variability (A), and
with temperature variability (B). In the left graphs, the different
curves represent communities of farmers dominated by
conventional farmers (solid black lines), experimenters (dashed
black lines), averse-to-risk farmers (solid grey lines), and risk
takers (dashed grey lines). Areas shaded in grey represent
standard deviations for each curve (30 simulations repetitions).
The right graphs represent boxplots of the distribution of
farmers’ pest control after 50 years.

The standard deviation in pest management practices after 50
years was significantly higher in simulations that included
temperature variability (Student’s t-test, t = -20.5, df = 36.8, p-
value < 0.05). It stabilized after 25 years (see Fig. 4). Farmers with
different pest management practices coexist and are maintained
over time.  

Heterogeneity in pest management practices decreased over 50
years when the model did not include temperature variability,
leading to homogenization of pest management practices. This
result applied to all communities, no matter the dominant
farmers’ behavior.

DISCUSSION
Our modeling approach is based on a strong empirical
background of both pest population dynamics and farmers’ pest
management behavior. This approach remains exploratory, and
must be applied to the real world with caution (Grüne-Yanoff
2009). However, we think our approach proposes a novel
methodology to explore and predict the consequences of climatic
and economic uncertainty on farmers’ use of adaptive
management in pest control.

Fig. 4. Evolution of heterogeneity in farmers’ pest management
practices. The standard deviation in pest management practices
for all farmers in a simulation was used to represent
heterogeneity. Standard deviations were represented using
boxplots (30 repetitions) without temperature variability in
white, and with temperature variability in grey. After 25 years
with temperature variability, heterogeneity in pest management
practices stabilized. In contrast, it continued to decrease when
there was no temperature variability, leading to homogenization
of pest management practices.

Impacts of climatic and economic variability on farmers’ pest
control
Our study revealed that efforts to deal with common problems
such as agricultural pests would be less effective in a context of
climatic variability. Uncertainty is common in biological systems
and central to the concept of adaptive management (Rist et al.
2013). In our model, adaptive management emerged from social-
ecological interactions within the agro-ecosystem in a process that
includes coping with uncertainties. Our modeling approach
supports the idea that adaptive management would be effective
when there is a lot of uncertainty, but it would take more time to
reach the same level of control than in a situation without
variability.  

In their study on Bali water temples, Lansing and Miller (2005)
suggest that community-level responses can emerge from
common problems such as pest management. In this sense,
intervention programs such as farmer field schools (Van den Berg
and Jiggins 2007) or collaborative monitoring (Fernandez-
Gimenez et al. 2008, Dangles et al. 2010) may foster adaptive
management and community-level responses by increasing
farmers’ knowledge of pest ecology in relation to climatic
variability, therefore reducing uncertainties related to the pest
dynamics.  

Additionally, our model demonstrated that climatic variability,
represented in our model as temperature, produced heterogeneity
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in farmers’ pest control strategies. This suggests that variability
itself  influenced pest control strategies, which may also be the
case with different temperature time series. In that sense, farmers’
pest control can be considered path-dependent, because local
rules of interaction between the farmers and the pest evolve as a
result of the balance between human-dependent and
temperature-dependent pest survival (Folke 2006). It means that
a particular series of climatic events can lead to large deviations
from the average pest control strategy.  

In the specific case of tropical Andean small-hold farmers, the
strong altitudinal gradients and land-use heterogeneity (Dangles
et al. 2008) resulted in different situations even at a small scale,
thereby increasing path-dependency. This characteristic of
adaptive systems has been documented in land-use models (e.g.,
Brown et al. 2005, Celio et al. 2014), and has negative
consequences on the predictability of an adaptive system.  

Our findings revealed that economic variability (variation in
potato price) did not influence farmers’ pest control strategies.
This is surprising, because interviews with farmers in the field
often indicated that potato price variability is an important driver
of potato grower behavior (Dangles et al. 2010). This could be
because we assumed that the area in cultivated in potatoes was
constant. However, many Andean subsistence-oriented potato
growers do claim to be market independent (Paredes 2010) and
rely on several agricultural activities to strengthen their food
security and economic stability.

Community adaptive management to economic and climatic
variability

Farmers’ behaviors
Our model was calibrated using farmers’ behaviors described in
the literature (Paredes 2010), and did not attempt to define the
most effective behavior in the face of climatic or economic
variability. However, our study is pertinent to exploring how
different farmers’ behaviors respond to environmental variability.
Conventional and averse-to-risk farmers both mimic the
behaviors of others, and as such are quite similar in terms of
underlying mechanisms. However, the shape of the pest control
curves for farmers with these two behaviors differed from one
another (Fig. 3).  

In their paper on adaptive management, Rist et al. (2013)
discussed when adaptive management is appropriate, highlighting
that “ecological uncertainty must be a key obstacle for
management.” Our theoretical study suggests that when there is
potential for a great deal of progress in controlling pests, reducing
uncertainty is not a key obstacle. This favors communities
dominated by conventional farmers over averse-to-risk farmers
in the early years of our simulations.

Heterogeneity in pest management practices
Our study highlights that uncertainty may play a key role in
orienting and maintaining heterogeneous pest management
practices, and supports the idea that farmers’ personal
representation of the system (mental model) is a key determinant
of adaptive management (Grothmann and Patt 2005, Acosta-
Michlik and Espaldon 2008). Here we assumed that farmers’
perceptions of how effective their pest management strategies
were depend on the level of pest infestation in their field, and not
the true efficiency of the strategy. A farmer mimicking another

farmer changed practices based on his/her perception of how
effectively pests were controlled (Fig. 2).  

In the simulations that included climatic variability, the level of
pest infestation was the result of how effective the pest control
strategy was, and of temperature-dependent pest mortality.
Farmers faced more uncertainty about the most efficient pest
management practices, because they could not distinguish
between these two influences on infestation, leading them to
adopt to nonoptimal pest management practices. Consequently,
we observed more diversity in pest management practices at the
community level when temperature was variable. At a broader
scale, our theoretical results suggest that uncertainty may be
crucial for maintaining diversity in pest management practices.
Theoretically, this uncertainty-driven diversity should strengthen
the adaptive management of the social-ecological systems at the
community level, (Olsson et al. 2004, Lin 2011, Barthel et al.
2013).

Adaptive management of a common problem
In their paper about competitiveness in traditional fishing
societies, Leibbrandt et al. (2013) found that individuals tend to
be less competitive and favor teamwork in collectivistic societies,
where nature constrains humans to work together. Our study
highlights how people must depend on one another when facing
a common problem (control of crop pest). This could be regarded
as a “coevolutionary relationship”: When they adapt their
practices in response to a constraint by imitating successful
behavior, humans “coevolve” with each other to maximize their
benefits (here farmers in rural Ecuadorian Andes face the need
to improve pest control; Mitleton-Kelly and Davy 2013). In our
model, this coevolution through imitation and experimentation
is taking the form of adaptive management. At a broader scale,
it supports the idea that adaptive management may be the result
of exposure to a common problem, even if  some individual
farmers-depending on their social environment (neighboring
farmers) and/or physical environment (climate variability) may
benefit less from adaptive management.

CONCLUSION
In conclusion, our simulation approach consisted of a modeling
framework that considered both spatial and temporal dynamics,
where social and ecological systems constantly interact with each
other. In this system, adaptive management in pest control
emerged when farmers were represented as heterogeneous agents
who interacted and influenced each other, and who were capable
of learning and adapting to circumstances. The results of our
study stress the importance of farmers’ perceptions and
uncertainties in their decision-making processes that result in
adaptive management. It also highlighted the possible role of
uncertainty in maintaining diversity in pest management
practices, which helps make farmers more resilient. At a broader
scale, it will help improve understanding of the mechanisms that
drive a shift to adaptive management. Grounded on field data, a
validated pest model, and consistent with described studies, this
study provides a valuable framework to study social-ecological
responses to global changes.

Responses to this article can be read online at: 
http://www.ecologyandsociety.org/issues/responses.
php/7511

http://www.ecologyandsociety.org/vol20/iss2/art18/
http://www.ecologyandsociety.org/issues/responses.php/7511
http://www.ecologyandsociety.org/issues/responses.php/7511


Ecology and Society 20(2): 18
http://www.ecologyandsociety.org/vol20/iss2/art18/

Acknowledgments:

This work was conducted within the project “Adaptive management
in insect pest control in thermally heterogeneous agricultural
landscapes” (ANR-12-JSV7-0013-01) funded by the Agence
Nationale pour la Recherche (ANR).

LITERATURE CITED
Acosta-Michlik, L., and V. Espaldon. 2008. Assessing
vulnerability of selected farming communities in the Philippines
based on a behavioural model of agent’s adaptation to global
environmental change. Global Environmental Change 18:554-563.
http://dx.doi.org/10.1016/j.gloenvcha.2008.08.006  

An, L. 2012. Modeling human decisions in coupled human and
natural systems: review of agent-based models. Ecological
Modelling 229:25-36. http://dx.doi.org/10.1016/j.ecolmodel.2011.07.010  

Astier, M., L. García-Barrios, Y. Galván-Miyoshi, C. E.
González-Esquivel, and O. R. Masera. 2012. Assessing the
sustainability of small farmer natural resource management
systems. A critical analysis of the MESMIS Program (1995-2010).
Ecology and Society 17(3): 25. http://dx.doi.org/10.5751/
ES-04910-170325  

Barthel, S., C. Crumley, and U. Svedin. 2013. Bio-cultural refugia
—safeguarding diversity of practices for food security and
biodiversity. Global Environmental Change 23:1142-1152. http://
dx.doi.org/10.1016/j.gloenvcha.2013.05.001  

Below, T. B., K. D. Mutabazi, D. Kirschke, C. Franke, S. Sieber,
R. Siebert, and K. Tscherning. 2012. Can farmers’ adaptation to
climate change be explained by socio-economic household-level
variables? Global Environmental Change 22:223-235. http://dx.
doi.org/10.1016/j.gloenvcha.2011.11.012  

Berger, T. 2001. Agent-based spatial models applied to
agriculture: a simulation tool for technology diffusion, resource
use changes and policy analysis. Agricultural Economics 
25:245-260. http://dx.doi.org/10.1111/j.1574-0862.2001.tb00205.
x  

Boone, R. B., K. A. Galvin, S. B. BurnSilver, P. K. Thornton, D.
S. Ojima, and J. R. Jawson. 2011. Using coupled simulation
models to link pastoral decision making and ecosystem services.
Ecology and Society 16(2): 6. [online] URL: http://www.
ecologyandsociety.org/vol16/iss2/art6/  

Brown, D. G., S. Page, R. Riolo, M. Zellner, and W. Rand. 2005.
Path dependence and the validation of agent-based spatial models
of land use. International Journal of Geographical Information
Science 19:153-174. http://dx.doi.org/10.1080/13658810410001713399  

Cabell, J. F., and M. Oelofse. 2012. An indicator framework for
assessing agroecosystem resilience. Ecology and Society 17(1): 18.
http://dx.doi.org/10.5751/ES-04666-170118  

Carrasco, L. R., D. Cook, R. Baker, A. MacLeod, J. D. Knight,
and J. D. Mumford. 2012. Towards the integration of spread and
economic impacts of biological invasions in a landscape of
learning and imitating agents. Ecological Economics 76:95-103.
http://dx.doi.org/10.1016/j.ecolecon.2012.02.009  

Carrasco, L. R., J. D. Mumford, A. MacLeod, T. Harwood, G.
Grabenweger, A. W. Leach, J. D. Knight, and R. H. A. Baker.

2010. Unveiling human-assisted dispersal mechanisms in invasive
alien insects: integration of spatial stochastic simulation and
phenology models. Ecological Modelling 221:2068-2075. http://
dx.doi.org/10.1016/j.ecolmodel.2010.05.012  

Celio, E., T. Koellner, and A. Grêt-Regamey. 2014. Modeling land
use decisions with Bayesian networks: spatially explicit analysis
of driving forces on land use change. Environmental Modelling &
Software 52:222-233. http://dx.doi.org/10.1016/j.envsoft.2013.10.014  

Cowpertwait, P. S. P., and A. V. Metcalfe. 2009. Introductory time
series with R. Springer, Dordrecht, The Netherlands.  

Crespo-Pérez, V., F. Rebaudo, J.-F. Silvain, and O. Dangles. 2011.
Modeling invasive species spread in complex landscapes: the case
of potato moth in Ecuador. Landscape Ecology 26:1447-1461.
http://dx.doi.org/10.1007/s10980-011-9649-4  

Dangles, O., C. Carpio, A. R. Barragan, J.-L. Zeddam, and J.-F.
Silvain. 2008. Temperature as a key driver of ecological sorting
among invasive pest species in the tropical Andes. Ecological
Applications 18:1795-1809. http://dx.doi.org/10.1890/07-1638.1  

Dangles, O., F. C. Carpio, M. Villares, F. Yumisaca, B. Liger, F.
Rebaudo, and J. Silvain. 2010. Community-based participatory
research helps farmers and scientists to manage invasive pests in
the Ecuadorian Andes. AMBIO: A Journal of the Human
Environment 39:325-335. http://dx.doi.org/10.1007/s13280-010-0041-4  

Dangles, O., V. Mesías, V. Crespo-Perez, and J.-F. Silvain. 2009.
Crop damage increases with pest species diversity: evidence from
potato tuber moths in the tropical Andes. Journal of Applied
Ecology 46:1115-1121. http://dx.doi.org/10.1111/j.1365-2664.2009.01703.
x  

Darnhoffer, I., S. Bellon, B. Dedieu, and R. Milestad. 2010.
Adaptiveness to enhance the sustainability of farming systems: a
review. Agronomy for Sustainable Development 30(3):545-555.
http://dx.doi.org/10.1051/agro/2009053  

Fernandez-Gimenez, M. E., H. L. Ballard, and V. E. Sturtevant.
2008. Adaptive management and social learning in collaborative
and community-based monitoring: a study of five community-
based forestry organizations in the western USA. Ecology and
Society 13(2): 4. [online] URL: http://www.ecologyandsociety.
org/vol13/iss2/art4/  

Filatova, T., P. H. Verburg, D. C. Parker, and C. A. Stannard.
2013. Spatial agent-based models for socio-ecological systems:
challenges and prospects. Environmental Modelling & Software 
45:1-7. http://dx.doi.org/10.1016/j.envsoft.2013.03.017  

Folke, C. 2006. Resilience: the emergence of a perspective for
social-ecological systems analyses. Global Environmental Change 
16:253-267. http://dx.doi.org/10.1016/j.gloenvcha.2006.04.002  

Grimm, V., U. Berger, D. L. DeAngelis, J. G. Polhill, J. Giske, and
S. F. Railsback. 2010. The ODD protocol: a review and first
update. Ecological Modelling 221:2760-2768. http://dx.doi.
org/10.1016/j.ecolmodel.2010.08.019  

Grothmann, T., and A. Patt. 2005. Adaptive capacity and human
cognition: the process of individual adaptation to climate change.
Global Environmental Change 15:199-213. http://dx.doi.
org/10.1016/j.gloenvcha.2005.01.002  

http://www.ecologyandsociety.org/vol20/iss2/art18/
http://dx.doi.org/10.1016%2Fj.gloenvcha.2008.08.006
http://dx.doi.org/10.1016%2Fj.ecolmodel.2011.07.010
http://dx.doi.org/10.5751%2FES-04910-170325
http://dx.doi.org/10.5751%2FES-04910-170325
http://dx.doi.org/10.1016%2Fj.gloenvcha.2013.05.001
http://dx.doi.org/10.1016%2Fj.gloenvcha.2013.05.001
http://dx.doi.org/10.1016%2Fj.gloenvcha.2011.11.012
http://dx.doi.org/10.1016%2Fj.gloenvcha.2011.11.012
http://dx.doi.org/10.1111%2Fj.1574-0862.2001.tb00205.x
http://dx.doi.org/10.1111%2Fj.1574-0862.2001.tb00205.x
http://www.ecologyandsociety.org/vol16/iss2/art6/
http://www.ecologyandsociety.org/vol16/iss2/art6/
http://dx.doi.org/10.1080%2F13658810410001713399
http://dx.doi.org/10.5751%2FES-04666-170118
http://dx.doi.org/10.1016%2Fj.ecolecon.2012.02.009
http://dx.doi.org/10.1016%2Fj.ecolmodel.2010.05.012
http://dx.doi.org/10.1016%2Fj.ecolmodel.2010.05.012
http://dx.doi.org/10.1016%2Fj.envsoft.2013.10.014
http://dx.doi.org/10.1007%2Fs10980-011-9649-4
http://dx.doi.org/10.1890%2F07-1638.1
http://dx.doi.org/10.1007%2Fs13280-010-0041-4
http://dx.doi.org/10.1111%2Fj.1365-2664.2009.01703.x
http://dx.doi.org/10.1111%2Fj.1365-2664.2009.01703.x
http://dx.doi.org/10.1051%2Fagro%2F2009053
http://www.ecologyandsociety.org/vol13/iss2/art4/
http://www.ecologyandsociety.org/vol13/iss2/art4/
http://dx.doi.org/10.1016%2Fj.envsoft.2013.03.017
http://dx.doi.org/10.1016%2Fj.gloenvcha.2006.04.002
http://dx.doi.org/10.1016%2Fj.ecolmodel.2010.08.019
http://dx.doi.org/10.1016%2Fj.ecolmodel.2010.08.019
http://dx.doi.org/10.1016%2Fj.gloenvcha.2005.01.002
http://dx.doi.org/10.1016%2Fj.gloenvcha.2005.01.002


Ecology and Society 20(2): 18
http://www.ecologyandsociety.org/vol20/iss2/art18/

Grüne-Yanoff, T. 2009. The explanatory potential of artificial
societies. Synthese 169:539-555. http://dx.doi.org/10.1007/
s11229-008-9429-0  

Happe, K., K. Kellermann, and A. Balmann. 2006. Agent-based
analysis of agricultural policies: an illustration of the agricultural
policy simulator AgriPoliS, its adaptation, and behavior. Ecology
and Society 11(1): 49. [online] URL: http://www.ecologyandsociety.
org/vol11/iss1/art49/  

Holling, C. S. 1978. Adaptive environmental assessment and
management. Wiley, Chichester, UK.  

Jager, W., M. A. Janssen, H. J. M. De Vries, J. De Greef, and C.
A. J. Vlek. 2000. Behaviour in commons dilemmas: Homo
economicus and Homo psychologicus in an ecological-economic
model. Ecological Economics 35:357-379. http://dx.doi.
org/10.1016/S0921-8009(00)00220-2  

Jones, N. A., H. Ross, T. Lynam, P. Perez, and A. Leitch. 2011.
Mental models: an interdisciplinary synthesis of theory and
methods. Ecology and Society 16(1): 46. [online] URL: http://
www.ecologyandsociety.org/vol16/iss1/art46/  

Karp, D. S., C. D. Mendenhall, R. F. Sandí, N. Chaumont, P. R.
Ehrlich, E. A. Hadly, and G. C. Daily. 2013. Forest bolsters bird
abundance, pest control and coffee yield. Ecology Letters 16
(11):1339-1347. http://dx.doi.org/10.1111/ele.12173  

Lansing, J. S., and J. H. Miller. 2005. Cooperation, games, and
ecological feedback: some insights from Bali. Current
Anthropology 46(2):328-333. http://dx.doi.org/10.1086/428790  

Leibbrandt, A., U. Gneezy, and J. A. List. 2013. Rise and fall of
competitiveness in individualistic and collectivistic societies.
Proceedings of the National Academy of Sciences 110:9305-9308.
http://dx.doi.org/10.1073/pnas.1300431110  

Lewis, W. J., J. C. van Lenteren, S. C. Phatak, and J. H. Tumlinson.
1997. A total system approach to sustainable pest management.
Proceedings of the National Academy of Science of the USA 
94:12243-12248. http://dx.doi.org/10.1073/pnas.94.23.12243  

Lin, B. B. 2011. Resilience in agriculture through crop
diversification: adaptive management for environmental change.
BioScience 61:183-193. http://dx.doi.org/10.1525/bio.2011.61.3.4  

Liu, J., T. Dietz, S. R. Carpenter, C. Folke, M. Alberti, C. L.
Redman, S. H. Schneider, E. Ostrom, A. N. Pell, J. Lubchenco,
W. W. Taylor, Z. Ouyang, P. Deadman, T. Kratz, and W.
Provencher. 2007. Coupled human and natural systems. AMBIO:
A Journal of the Human Environment 36:639-649. http://dx.doi.
org/10.1579/0044-7447(2007)36[639:CHANS]2.0.CO;2  

Matthews, R. B., N. G. Gilbert, A. Roach, J. G. Polhill, and N.
M. Gotts. 2007. Agent-based land-use models: a review of
applications. Landscape Ecology 22:1447-1459. http://dx.doi.
org/10.1007/s10980-007-9135-1  

Millennium Ecosystem Assessment (MEA). 2005. Ecosystems
and human well-being: synthesis. Island Press, Washington, D.C.,
USA.  

Mitleton-Kelly, E., and L. K. Davy. 2013. The concept of ‘co-
evolution’ and its application in the social sciences: a review of
the literature. Pages 43-57 in E. Mitleton-Kelly, editor. Co-

evolution of intelligent socio-technical systems. Springer Berlin
Heidelberg, Germany. http://dx.doi.org/10.1007/978-3-642-36614-7_3  

Müller, B., F. Bohn, G. Dreßler, J. Groeneveld, C. Klassert, R.
Martin, M. Schlüter, J. Schulze, H. Weise, and N. Schwarz. 2013.
Describing human decisions in agent-based models - ODD + D,
an extension of the ODD protocol. Environmental Modelling &
Software 48:37-48. http://dx.doi.org/10.1016/j.envsoft.2013.06.003  

Nguema, A., G. W. Norton, J. Alwang, D. B. Taylor, V. Barrera,
and M. Bertelsen. 2013. Farm-level economic impacts of
conservation agriculture in Ecuador. Experimental Agriculture 
49:134-147. http://dx.doi.org/10.1017/S0014479712001044  

Olsson, P., C. Folke, and F. Berkes. 2004. Adaptive comanagement
for building resilience in social-ecological systems. Environmental
Management 34:75-90. http://dx.doi.org/10.1007/s00267-003-0101-7  

O’Sullivan, D., and G. L. W. Perry. 2013. Aggregation and
segregation. Pages 57-95 in D. O’Sullivan, and G. L. W. Perry.
Spatial simulation: exploring pattern and process. John Wiley &
Sons, Chichester, UK.  

Paredes, M. 2010. Peasants, potatoes, and pesticides: heterogeneity
in the context of agricultural modernization in the Highland Andes
of Ecuador. Wageningen University, Wageningen, The
Netherlands.  

Parker, D. C., S. M. Manson, M. A. Janssen, M. J. Hoffmann,
and P. Deadman. 2003. Multi-agent systems for the simulation of
land-use and land-cover change: a review. Annals of the
Association of American Geographers 93:314-337. http://dx.doi.
org/10.1111/1467-8306.9302004  

Parrott, L., C. Chion, R. Gonzalès, and G. Latombe. 2012.
Agents, individuals, and networks: modeling methods to inform
natural resource management in regional landscapes. Ecology and
Society 17(3): 32. http://dx.doi.org/10.5751/ES-04936-170332  

Perez, C., C. Nicklin, O. Dangles, S. Vanek, S. G. Sherwood, S.
Halloy, K. A. Garrett, and G. A. Forbes. 2010. Climate change
in the High Andes: implications and adaptation strategies for
small-scale farmers. International Journal of Environmental,
Cultural, Economic and Social Sustainability 6:71-88.  

R Core Team. 2014. R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna,
Austria.  

Railsback, S. F., and M. D. Johnson. 2011. Pattern-oriented
modeling of bird foraging and pest control in coffee farms.
Ecological Modelling 222(18):3305-3319. http://dx.doi.org/10.1016/
j.ecolmodel.2011.07.009  

Rebaudo, F., and O. Dangles. 2011. Coupled information
diffusion-pest dynamics models predict delayed benefits of
farmer cooperation in pest management programs. PLoS
Computational Biology 7(10):e1002222. http://dx.doi.org/10.1371/
journal.pcbi.1002222  

Rebaudo, F., and O. Dangles. 2013. An agent-based modeling
framework for integrated pest management dissemination
programs. Environmental Modelling & Software 45:141-149.
http://dx.doi.org/10.1016/j.envsoft.2012.06.014  

http://dx.doi.org/10.1007%2Fs11229-008-9429-0
http://dx.doi.org/10.1007%2Fs11229-008-9429-0
http://www.ecologyandsociety.org/vol11/iss1/art49/
http://www.ecologyandsociety.org/vol11/iss1/art49/
http://dx.doi.org/10.1016%2FS0921-8009%2800%2900220-2
http://dx.doi.org/10.1016%2FS0921-8009%2800%2900220-2
http://www.ecologyandsociety.org/vol16/iss1/art46/
http://www.ecologyandsociety.org/vol16/iss1/art46/
http://dx.doi.org/10.1111%2Fele.12173
http://dx.doi.org/10.1086%2F428790
http://dx.doi.org/10.1073%2Fpnas.1300431110
http://dx.doi.org/10.1073%2Fpnas.94.23.12243
http://dx.doi.org/10.1525%2Fbio.2011.61.3.4
http://dx.doi.org/10.1579%2F0044-7447%282007%2936%5B639%3ACHANS%5D2.0.CO%3B2
http://dx.doi.org/10.1579%2F0044-7447%282007%2936%5B639%3ACHANS%5D2.0.CO%3B2
http://dx.doi.org/10.1007%2Fs10980-007-9135-1
http://dx.doi.org/10.1007%2Fs10980-007-9135-1
http://dx.doi.org/10.1007%2F978-3-642-36614-7_3
http://dx.doi.org/10.1016%2Fj.envsoft.2013.06.003
http://dx.doi.org/10.1017%2FS0014479712001044
http://dx.doi.org/10.1007%2Fs00267-003-0101-7
http://dx.doi.org/10.1111%2F1467-8306.9302004
http://dx.doi.org/10.1111%2F1467-8306.9302004
http://dx.doi.org/10.5751%2FES-04936-170332
http://dx.doi.org/10.1016%2Fj.ecolmodel.2011.07.009
http://dx.doi.org/10.1016%2Fj.ecolmodel.2011.07.009
http://dx.doi.org/10.1371%2Fjournal.pcbi.1002222
http://dx.doi.org/10.1371%2Fjournal.pcbi.1002222
http://dx.doi.org/10.1016%2Fj.envsoft.2012.06.014
http://www.ecologyandsociety.org/vol20/iss2/art18/


Ecology and Society 20(2): 18
http://www.ecologyandsociety.org/vol20/iss2/art18/

Rist, L., A. Felton, L. Samuelsson, C. Sandström, and O. Rosvall.
2013. A new paradigm for adaptive management. Ecology and
Society 18(4): 63. http://dx.doi.org/10.5751/ES-06183-180463  

Rounsevell, M. D. A., D. T. Robinson, and D. Murray-Rust. 2012.
From actors to agents in socio-ecological systems models.
Philosophical Transactions of the Royal Society B: Biological
Sciences 367:259-269. http://dx.doi.org/10.1098/rstb.2011.0187  

Schreinemachers, P., and T. Berger. 2011. An agent-based
simulation model of human-environment interactions in
agricultural systems. Environmental Modelling & Software 
26:845-859. http://dx.doi.org/10.1016/j.envsoft.2011.02.004  

Shea, K., H. P. Possingham, W. W. Murdoch, and R. Roush. 2002.
Active adaptive management in insect pest and weed control:
intervention with a plan for learning. Ecological Applications 
12:927-936. http://dx.doi.org/10.1890/1051-0761(2002)012[0927:
AAMIIP]2.0.CO;2  

Speelman, E. N., and L. E. García-Barrios. 2010. Agrodiversity
v.2: an educational simulation tool to address some challenges for
sustaining functional agrodiversity in agro-ecosystems.
Ecological Modelling 221:911-918. http://dx.doi.org/10.1016/j.
ecolmodel.2009.12.007  

Susskind, L., A. E. Camacho, and T. Schenk. 2012. A critical
assessment of collaborative adaptive management in practice.
Journal of Applied Ecology 49:47-51. http://dx.doi.org/10.1111/
j.1365-2664.2011.02070.x  

Torres-Leguizamón, M., S. Dupas, D. Dardon, Y. Gómez, L.
Niño, A. Carnero, A. Padilla, I. Merlin, A. Fossoud, J.-L.
Zeddam, X. Lery, C. Capdevielle-Dulac, O. Dangles, and J.-F.
Silvain. 2011. Inferring native range and invasion scenarios with
mitochondrial DNA: the case of T. solanivora successive north-
south step-wise introductions across Central and South America.
Biological Invasions 13:1505-1519. http://dx.doi.org/10.1007/
s10530-010-9909-2  

Van den Berg, H., and J. Jiggins. 2007. Investing in farmers-the
impacts of farmer field schools in relation to integrated pest
management. World Development 35:663-686. http://dx.doi.
org/10.1016/j.worlddev.2006.05.004  

Watkins, C., D. Massey, J. Brooks, K. Ross, and M. L. Zellner.
2013. Understanding the mechanisms of collective decision
making in ecological restoration: an agent-based model of actors
and organizations. Ecology and Society 18(2): 32. http://dx.doi.
org/10.5751/ES-05497-180232  

Wilensky, U. 1999. NetLogo version 5.1.0. The Center for
Connected Learning and Computer-based Modeling, Northwestern
University, Evanston, Illinois, USA.  

Zellner, M. L. 2008. Embracing complexity and uncertainty: the
potential of agent-based modeling for environmental planning
and policy. Planning Theory & Practice 9(4):437-457. http://dx.
doi.org/10.1080/14649350802481470

http://dx.doi.org/10.5751%2FES-06183-180463
http://dx.doi.org/10.1098%2Frstb.2011.0187
http://dx.doi.org/10.1016%2Fj.envsoft.2011.02.004
http://dx.doi.org/10.1890%2F1051-0761%282002%29012%5B0927%3AAAMIIP%5D2.0.CO%3B2
http://dx.doi.org/10.1890%2F1051-0761%282002%29012%5B0927%3AAAMIIP%5D2.0.CO%3B2
http://dx.doi.org/10.1016%2Fj.ecolmodel.2009.12.007
http://dx.doi.org/10.1016%2Fj.ecolmodel.2009.12.007
http://dx.doi.org/10.1111%2Fj.1365-2664.2011.02070.x
http://dx.doi.org/10.1111%2Fj.1365-2664.2011.02070.x
http://dx.doi.org/10.1007%2Fs10530-010-9909-2
http://dx.doi.org/10.1007%2Fs10530-010-9909-2
http://dx.doi.org/10.1016%2Fj.worlddev.2006.05.004
http://dx.doi.org/10.1016%2Fj.worlddev.2006.05.004
http://dx.doi.org/10.5751%2FES-05497-180232
http://dx.doi.org/10.5751%2FES-05497-180232
http://dx.doi.org/10.1080%2F14649350802481470
http://dx.doi.org/10.1080%2F14649350802481470
http://www.ecologyandsociety.org/vol20/iss2/art18/


 
 

Appendix #1. Fig. A1.1 

 

Fig. A1.1. Pest temperature dependant survival model, following Sharpe and 

DeMichele (in blue, see Crespo-Pérez et al. 2011 Supplementary material 1 for the 

model parameters), and temperature variability in our agent-based model (in red). 

Further sensitivity analyses demonstrated a linear response of farmers’ pest control 

to different degrees of variability in temperature (using a Gaussian distribution 

centered on 15 degrees and with a standard deviation ranging from 0 to 5). 

 

 

  



 
 

Appendix #1. Fig. A1.2 

 

Fig. A1.2. Time series of the potato price in Ecuador observed from 1990 to 2005 

(data from SIGAGRO, Coordinación Consejo Consultivo Papa) (A). The time series 

has been decomposed over periods of 6 months (to fit the temporal scale of the 

model) according to an additive model (B) to extract the random component of potato 

price. Then we simulated potato price variability using a normal distribution (C), 

which has been used to simulate 50 years in our model. 

 

 

 

  



 
 

Appendix #1. Fig. A1.3 

 

Fig. A1.3. Fluctuations in farm revenue from the optimized model. The standard 

deviation in farm revenue is represented for the four main farmers’ behaviors at 

equilibrium. As described in the literature, behaviors based on experiments exhibits 

fluctuations in farm revenue. 
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