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Summary

1. The relationship between species richness and ecosystem function, as measured by productivity or biomass,
is of long-standing theoretical and practical interest in ecology. This is especially true for forests, which repre-
sent a majority of global biomass, productivity and biodiversity.
2. Here, we conduct an analysis of relationships between tree species richness, biomass and productivity in 25
forest plots of area 8–50 ha from across the world. The data were collected using standardized protocols, obvi-
ating the need to correct for methodological differences that plague many studies on this topic.
3. We found that at very small spatial grains (0.04 ha) species richness was generally positively related to pro-
ductivity and biomass within plots, with a doubling of species richness corresponding to an average 48%
increase in productivity and 53% increase in biomass. At larger spatial grains (0.25 ha, 1 ha), results were
mixed, with negative relationships becoming more common. The results were qualitatively similar but much
weaker when we controlled for stem density: at the 0.04 ha spatial grain, a doubling of species richness corre-
sponded to a 5% increase in productivity and 7% increase in biomass. Productivity and biomass were them-
selves almost always positively related at all spatial grains.
4. Synthesis. This is the first cross-site study of the effect of tree species richness on forest biomass and productiv-
ity that systematically varies spatial grain within a controlled methodology. The scale-dependent results are consis-
tent with theoretical models in which sampling effects and niche complementarity dominate at small scales, while
environmental gradients drive patterns at large scales. Our study shows that the relationship of tree species richness
with biomass and productivity changes qualitatively when moving from scales typical of forest surveys (0.04 ha) to
slightly larger scales (0.25 and 1 ha). This needs to be recognized in forest conservation policy and management.

Key-words: biodiversity, biomass, complementarity, determinants of plant community diversity
and structure, productivity, sampling effects, species diversity, trees

Introduction

Research into the relationship between species richness and
ecosystem function is motivated by both a basic interest in
understanding ecological communities (Pianka 1966; Odum
1969; Tilman et al. 1997) and a practical need to conserve
and manage ecosystem services (Schwartz et al. 2000; Sri-
vastava & Vellend 2005). Ecosystem functions are classified
as stocks, fluxes or stabilizing functions (Pacala & Kinzig
2002; Srivastava & Vellend 2005). Woody productivity (a
flux) and biomass carbon storage (a stock) are two key eco-
system functions in forests (Pacala & Kinzig 2002). Forest
carbon storage is of particular concern because globally for-
ests hold more carbon than the atmosphere (Pan et al. 2011),
and management of these carbon stores is an important tool
for mitigating global climate change. In total, forests account
for approximately 60% of terrestrial productivity and 85% of
biomass (Randolph et al. 2005) and tropical forests alone
account for more than 50% of terrestrial species diversity
(Wilson 1988).

Many studies of species richness and ecosystem function
have focused on productivity (Tilman et al. 1997; Loreau
et al. 2001). Theory predicts positive effects of species rich-
ness on productivity through niche complementarity, facilita-
tion and sampling effects (Abrams 1995; Tilman 1999;
Fridley 2001; Loreau et al. 2001; Flombaum & Sala 2008).
Niche complementarity occurs because niches, such as differ-
ences in resource-use or enemy-defence strategies, lead to
increases in a species’ performance as local abundance of
conspecifics decreases and thus to better overall community-
level performance, that is, higher productivity, when there are
more species and fewer individuals per species (Janzen 1970;
Connell 1971; Comita et al. 2010; Mangan et al. 2010).
Facilitation occurs when species enhance one another’s per-
formances (Hooper 1998). Sampling effects arise because spe-
cies richness varies randomly across quadrats, and quadrats
with high species richness are more likely, by chance, to con-
tain particular high-yield species. These sampling effects are
also referred to as selection effects (Turnbull et al. 2012),
because they assume that the high-yield species contribute
disproportionately in mixtures.
The predicted positive relationships between richness and

productivity are broadly supported by small-scale empirical*Correspondence author. E-mail: ryan.chis@gmail.com
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studies that manipulate species richness in herbaceous com-
munities (Tilman et al. 1997; Hooper 1998; Symstad et al.
1998; Loreau et al. 2001), but observational studies have
produced mixed results. Early observational studies pointed
to a hump-shaped relationship in which species richness
peaks at intermediate productivity and declines towards
extreme high or low productivity (Grime 1979; Loreau et al.
2001; Mittelbach et al. 2001; Rahbek 2005; Mittelbach
2010). But subsequent studies have cast doubt on the gener-
ality of the hump-shaped relationship, with positive, negative,
flat and even U-shaped relationships being observed (Mittel-
bach 2010; Whittaker 2010). Theoretical explanations for
hump-shaped productivity–richness patterns (Abrams 1995;
Rosenzweig & Abramsky 1998; Aarssen 2001) generally
assume that productivity acts as a proxy for environmental
conditions and that environmental conditions drive species
richness. One proposed mechanism for declines in species
richness at high productivity is that in high-resource environ-
ments, there is less environmental heterogeneity and hence
fewer niches (Rosenzweig & Abramsky 1998). Alternatively,
the ‘species pool’ hypothesis explains the overall unimodal
pattern by postulating that fewer species are adapted to
extreme low- or high-productivity environments, because of a
mid-domain effect (Aarssen 2004) or because low- and high-
productivity areas have been less common over geological
time (Schamp, Aarssen & Lee 2003). Although the hump-
shaped productivity–richness pattern has a long history of
theoretical and empirical support, its general applicability
remains a matter of debate (Whittaker 2010; Adler et al.
2011; Fridley et al. 2012).
The predictions for relationships between richness and pro-

ductivity outlined above lead directly to similar predictions
for richness–biomass relationships, insofar as higher forest
productivity is associated with higher standing biomass. In
annual herbaceous communities, above-ground biomass is
essentially synonymous with productivity, and the two terms
are often used interchangeably. In forests, however, produc-
tivity and biomass are distinct (Rosenzweig & Abramsky
1998): although at local scales higher productivity enables
faster biomass accumulation over forest succession and higher
eventual old-growth biomass (Bonan et al. 2003), productiv-
ity and biomass and are not significantly associated at global
scales (Keeling & Phillips 2007). Therefore, biomass and pro-
ductivity should be treated separately in analyses of species
richness and ecosystem function in forests.
Relatively few studies on the relationship of species rich-

ness to biomass and productivity have been conducted in for-
ests. Those that do have generally been limited to small
spatial grains (i.e. small size of the sampling unit or quadrat;
typically < 0.1 ha) and local to regional spatial extents (Vil�a
et al. 2007; Ruiz-Jaen & Potvin 2010; Paquette & Messier
2011) and generally have found positive relationships. Rich-
ness–productivity relationships in forests have also been
incorporated in meta-analyses that include other ecosystem
types (e.g. Mittelbach et al. 2001), but methodological differ-
ences between individual studies that comprise the meta-anal-
yses have confounded attempts to draw general conclusions

(Whittaker 2010): different studies use different spatial
extents, spatial grains, census methodologies and measures of
productivity (including rainfall, biomass and other surrogate
variables) and focus on different taxonomic groups (including
both plants and animals).
For this study, we utilized a global data set of large-scale

forest plots to investigate how the relationship of tree species
richness to forest biomass and productivity varies across a
range of spatial grains within sites and to test whether the
observed patterns are general across sites. Our approach of
using a standardized global data set allowed us to overcome
the limitations of many previous cross-site studies (usually
meta-analyses) that address the topic of species richness, pro-
ductivity and biomass. We predicted that richness and func-
tion (the latter measured by productivity and biomass) would
be positively related at most sites and that productivity would
be strongly positively related to biomass at all sites. We also
predicted that successional processes associated with treefall
gaps (Schnitzer & Carson 2001) might lead to negative rela-
tionships at small spatial grains at some sites, because areas
that have recently been in gaps typically have many small
stems, high species richness and low biomass, while areas
with mature trees have fewer, larger stems, lower species
richness and higher biomass (Condit et al. 1996; Aarssen,
Laird & Piter 2003).

Materials and methods

SITE SELECTION

We compared relationships between tree species richness, annual
above-ground coarse woody dry productivity (CWP) and above-
ground dry woody biomass (AGB) across 25 forest plots in the global
network coordinated by the Center for Tropical Forest Science/Smith-
sonian Institution Global Earth Observatories (CTFS/SIGEO) (http://
www.sigeo.si.edu/). The plots spanned temperate and tropical regions
across five continents (Table 1; Fig. 1). Twelve of the plots were
censused two or more times (at intervals of 4–10 year; Table 1), in
which case we used two consecutive censuses for CWP estimates
(see below) and the first of these censuses for AGB and richness esti-
mates. For single-census plots, we analysed only AGB and richness.
The forest plots have similar spatial extents (8–50 ha; Table 1) and
censuses of individual stems at each site followed the standard CTFS/
SIGEO protocols (Condit 1998).

DATA COLLECTION

The data for each plot were trimmed, if necessary, to fit within a rect-
angular region with edges that were even multiples of 100 m
(Table 1). This guaranteed that the plot could be evenly divided into
1 ha quadrats and that the same total area could be used for analyses
at all spatial grains. Sections of the plot outside the rectangular region
were discarded. We then subdivided the plot into nonoverlapping
quadrats at three spatial grains: 20 9 20 m (0.04 ha), 50 9 50 m
(0.25 ha) and 100 9 100 m (1 ha).

Species richness for each quadrat at each spatial grain was calcu-
lated by summing the number of tree species with at least 1 stem ≥
10 cm DBH in the quadrat. We used species richness rather than
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some other measure of diversity (e.g. Shannon’s index) because rich-
ness is easily interpreted and most relevant to theoretical richness–
function mechanisms (e.g. niche complementarity and sampling
effects). We included only trees ≥ 10 cm DBH because trees of this
size contribute the vast majority of CWP and AGB. (For CWP,
trees ≥ 10 cm DBH constitute 91.3 � 3.8% (mean � standard devia-
tion) of the CWP of all trees ≥ 1 cm DBH at the 12 sites at which
CWP was calculated, all of which had data on stems ≥ 1 cm DBH.
For AGB, trees ≥ 10 cm DBH constitute 96.3 � 2.9% of the AGB
of all trees ≥ 1 cm DBH at the 19 sites for which data on stems
≥1 cm DBH were available.)

The AGB of each individual stem (including all stems ≥10 cm
DBH on multistemmed individuals) was estimated from DBH and
allometric regressions. At some sites, we were able to use site-specific
or species-specific allometric regressions; at other sites, we used gen-
eric allometric equations (Chave et al. 2005; Table S1, in Supporting
Information). Total AGB for each quadrat at each spatial grain was
calculated by summing AGB for all stems in a quadrat. Although
errors associated with allometric equations can be large (Chave et al.
2004), they should in general lead to fairly consistent under- or over-
estimates of AGB within sites, meaning that the resulting within-site
relationships between richness and AGB should be robust.

The CWP for each quadrat was calculated as the sum of AGB
growth for surviving stems and AGB of new stems divided by the
length of the census interval in years. In six of the plots, individual
stems on multistemmed trees had not been tagged and recorded con-
sistently, so we could estimate change in AGB only at the tree level.
For these plots, CWP was therefore underestimated (because the data
do not reveal cases in which a stem on a multistemmed tree died and
was replaced by a different stem during the census interval). In all
plots, negative CWP estimates for stems or trees that apparently
shrunk were replaced with zero CWP, because individual tree CWP,
by definition, cannot be negative.

STAT IST ICAL ANALYS IS

All variables were log-transformed prior to analysis. Statistical
analyses were performed in the software R version 2.15.0 (http://
www.r-project.org/). At each site and for each spatial grain, we used
generalized least-squares models with a maximum likelihood fitting
method (nlme package in R) to fit richness–CWP (independent–
dependent variable), richness–AGB and CWP–AGB relationships
among quadrats. We used generalized least-squares models because
we needed to account for spatial autocorrelation among quadrats, and
generalized least-squares is a reliable method for doing so (Beale
et al. 2010). We used a maximum likelihood method rather than a
restricted maximum likelihood method because we wanted to compare
the separate models with Akaike Information Criterion (AIC) and
because we did not need to estimate variance components (Zuur et al.
2009). We fitted linear models with and without spherical autocorrela-
tion structure, and for each combination of site, scale and variables,
we selected the model with the lowest AIC (Tables S2 and S3 in
Supporting Information). Effect size was measured as the slope of a
relationship on log-log axes, so that if y = Axb, then b is the effect
size, and an effect size of zero indicates no effect of the variable x on
the variable y. The mean effect size across sites for each relationship
was calculated as a variance-weighted mean of the site effects, and
confidence intervals on the mean effect size were estimated by boot-
strapping over sites.

Our method of fitting individual site models with generalized least-
squares is exactly equivalent to fitting a single mixed-effects model
for all of the data with ‘site’ as a fixed effect. A different approach
would be to treat ‘site’ as a random effect: this would minimize the
overall error in the mean effect size but would lead to biased site
effects because of shrinkage (individual site observations are pulled
towards the mean). We did not fit such a random-effects model
because we wanted unbiased site effects and because the resulting

Table 1. Study sites (ordered by distance from the equator; further details at http://www.ctfs.si.edu/)

Site name Short name Latitude Longitude Rainfall (mm year�1) Area used (ha) Census years used

Yasuni yas 0.69°S 76.40°W 3081 25 1996, 2003
Pasoh pas 2.98°N 102.31°E 1788 50 2000, 2005
Amacayacu ama 3.81°S 70.27°W 3200 25 2011
Lambir lam 4.19°N 114.02°E 2664 50 1992, 1997
Korup kor 5.07°N 8.85°E 5272 50 1998, 2008
Sinharaja sin 6.40°N 80.40°E 5012 25 1995, 2001
Barro Colorado Island bci 9.15°N 79.85°W 2551 50 2005, 2010
Mudumalai mud 11.60°N 76.53°E 1249 50 1996, 2000
Huai Kha Khaeng hkk 15.63°N 99.22°E 1476 50 1993, 1999
Palanan pal 17.04°N 122.39°E 3380 16 1998, 2004
Luquillo luq 18.33°N 65.82°W 3548 15 2005
Xishuangbanna xis 21.61°N 101.57°E 1532 20 2007
Dinghushan dhs 23.16°N 112.51°E 1985 20 2005, 2010
Lienhuachih lie 23.91°N 120.88°E 2285 25 2008
Fushan fus 24.76°N 121.56°E 4271 25 2004, 2009
Ilha do Cardoso PEI 25.10°S 47.96°W 2261 9 2004
Gutianshan gut 29.25°N 118.12°E 1964 24 2005
Yosemite yos 37.76°N 119.82°W 1061 24 2010
SCBI scb 38.89°N 78.15°W 1976 24 2008
SERC SER 38.89°N 76.56°W 1080 16 2011
Dongling don 39.96°N 115.41°E 568 20 2010
Changbai cha 42.38°N 128.08°E 700 25 2004, 2009
Haliburton hal 45.29°N 78.64°W 1050 8 2009
Wabikon wab 45.55°N 88.80°W 780 24 2008
Wytham Woods wyt 51.77°N 1.34°W 726 18 2010
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estimate of the mean effect size is unlikely to be substantially differ-
ent from the fixed-effects model. Moreover, existing R implementa-
tions of mixed-effects models do not allow different strengths of
spatial autocorrelation at different effect levels (i.e. at different sites).

In the richness–CWP and richness–AGB regressions, we treated
richness as the independent variable, because we assumed that the
causal effects of richness on CWP and AGB (due to niche comple-
mentarity and sampling effects) would be stronger than those in the
reverse direction (due to environmental gradients) at the small spatial
extents considered (at larger spatial extents than those considered
here, it would make more sense to treat richness as the dependent
variable). In the CWP–AGB regressions, we treated CWP as the inde-
pendent variable, because we assumed that CWP directly affects
AGB more than vice versa. In any case, these are predominantly
issues of interpretation: the qualitative results of all our analyses
change little if the dependent and independent variables are switched
(results not shown).

To test for possible unimodal relationships usually characteristic of
data sets across broader environmental gradients, we repeated the
above richness–CWP and richness–AGB analyses with the indepen-
dent and dependent variables switched and with quadratic models
included. Relationships were considered significantly unimodal only if
the turning point of the quadratic model was within the range of the
data [as judged by the Mitchell-Olds and Shaw test (Mitchell-Olds &
Shaw 1987; Mittelbach et al. 2001)], and the quadratic model had the
lowest AIC. By these criteria, only nine of 111 model comparisons
resulted in a significant unimodal relationship, and all but two of
these showed an increasing trend over the range of the data. This is
consistent with the absence of theoretical support for unimodal
relationships at local spatial scales (Fridley et al. 2012). We did not
consider unimodal relationships further.

EFFECTS OF STEM DENSITY

To control for the possible confounding effects of number of stems
per quadrat on the results, we repeated the original analysis after
first removing the effect of stem density on CWP and AGB with
locally weighted polynomial (LOESS) regressions (function loess in

R with span = 1 and degree = 2). The original generalized least-
squares regressions were then repeated but with the residuals of
these LOESS regressions replacing CWP and AGB as the dependent
variables (Fig. 3 and Tables S3.1–S3.6 in Supporting Information)
and with no intercept term because the residuals of the LOESS
regressions have zero mean. This two-stage regression method was
used because it is more conservative than, for example, a standard
multiple linear regression. It is conservative because it attributes as
much variation in CWP or AGB as possible to stem density (within
the constraints of what a LOESS regression can fit) rather than to
species richness. The regression of the LOESS residuals on species
richness then provides a conservatively biased estimate of the effect
of species richness on CWP or AGB, which we use as a lower
bound on the true effect size alongside the upper bound from the
original analysis (which did not consider the effects of stem density
at all).

Results

At the smallest spatial grain (0.04 ha), productivity and bio-
mass were both positively related to species richness within
most forest plots (Fig. 2a,b). The mean effect size across our
forest plots was b = 0.566 (95% confidence interval = [0.426,
0.717]) for productivity and 0.613 [0.480, 0.755] for biomass,
meaning that a doubling of species richness corresponds to an
average 48% (=2b–1) increase in productivity and 53%
increase in biomass.
Results at the larger spatial grains (0.25 and 1 ha) were

qualitatively different: relationships between richness and
productivity were weak and often negative (Fig. 2c,e; mean
effect size –0.096 [–0.309, 0.091] at 0.25 ha and –0.415
[–1.090, 0.068] at 0.1 ha), as were relationships between rich-
ness and biomass (Fig. 2d,f; mean effect size 0.059 [–0.218,
0.337] at 0.25 ha and –0.357 [–1.031, 0.255] at 1 ha). Indi-
vidual results for each site are presented in the Supporting
Information (Figs S1–S6 and Tables S2.1–S2.6 in Supporting
Information).
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The results of the analysis controlling for stem density
were qualitatively similar to the main results, but the posi-
tive relationships were generally weakened (Fig. 3). The
weaker positive relationships at the 0.04 ha grain were evi-
dent in the much smaller mean effect sizes, 0.067 [–0.019,
0.146] for productivity and 0.098 [0.016, 0.179] for bio-
mass, meaning that a doubling of species richness corre-
sponds to an average 5% increase in productivity and 7%
increase in biomass (Fig. 3a,b). Controlling for stem density
moved the mean effect size in a negative direction at the
0.25 ha spatial grain but not the 1 ha spatial grain for both
the richness–productivity (–0.220 [–0.541, 0.049] at 0.25 ha
and –0.317 [–0.767, 0.040] at 1 ha) and richness–biomass
(–0.214 [–0.437, 0.001] at 0.25 ha and –0.327 [–0.915,
0.227] at 1 ha) relationships. The relationship of stem den-
sity itself to biomass and productivity was generally posi-
tive but saturating at the 0.04 ha spatial grain and variable
at the larger spatial grains (Figs S7–S12 in Supporting
Information).
The productivity–biomass relationships were generally posi-

tive, and in contrast to the results involving species richness,
the effect sizes were fairly robust to increasing spatial grain
and to the inclusion of stem density in the model (Fig. 4).
The effect sizes before controlling for stem density were
0.371 [0.244, 0.485], 0.322 [0.218, 0.432] and 0.409 [0.210,
0.638] at the 0.04, 0.25 and 1 ha spatial scales, respectively,

and 0.251 [0.138, 0.352], 0.273 [0.171, 0.377] and 0.350
[0.177, 0.552] after controlling for stem density (Fig. 4).
Cross-site comparisons of mean productivity, mean biomass

and mean 1 ha species richness showed that all three vari-
ables were positively correlated across sites with no strong
evidence of unimodal relationships (Figs S13–S15 and Table
S4 in Supporting Information), although the number of data
points (sites) was low, and therefore, the statistical power to
resolve cross-site patterns was also low.

Discussion

Our results highlight the fundamental role of scale (Waide
et al. 1999; Mittelbach et al. 2001; Rahbek 2005) in deter-
mining the observed relationship between species richness
and ecosystem function in forests. Previous studies on this
topic in forests have found positive relationships between spe-
cies richness and ecosystem function (as measured by produc-
tivity or biomass; Vil�a et al. 2007; Ruiz-Jaen & Potvin 2010;
Paquette & Messier 2011; Zhang, Chen & Reich 2012), but
our analyses show that mean effect sizes may become zero or
even negative at spatial grains larger than those that have typ-
ically been considered before (< 0.1 ha). Moreover, a propor-
tion of the positive effect at small spatial grains may be
attributable to local variation in stem density rather than
classic species sampling effects, niche complementarity and
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facilitation. While the small-scale positive effects of species
richness on biomass and productivity in forests remain of eco-
logical interest, one clearly cannot easily generalize these
effects to larger spatial grains or to scales relevant to conser-
vation and forestry: at some sites, species richness is even
significantly negatively related to biomass at large spatial
grains.
As noted above, the frequent positive relationships between

species richness and ecosystem function in our sites,
especially at small spatial grains (Fig. 2a,b, Fig. 3a,b), are
consistent with other studies from forests (Vil�a et al. 2007;
Ruiz-Jaen & Potvin 2010; Paquette & Messier 2011; Zhang,
Chen & Reich 2012; Gamfeldt et al. 2013) and contrast with
a recent global study of herbaceous plant communities that
found no consistent patterns between productivity and species
richness (Adler et al. 2011). The positive relationships are
also consistent with ecological theory on sampling effects,
niche complementarity and facilitation (Fridley 2001). Mecha-
nistically, the sampling effect arises in conjunction with a
selection effect, in the sense that some quadrats may, by
chance, have been colonized by more species, and quadrats
with more species are more likely to contain individual
species that are more productive, sets of species that show
ecological complementarity, or both, and so are able to utilize
available resources more fully, leading to overall higher

productivity. Other factors being equal, higher productivity
should lead to higher biomass, as seen here (Fig. 4), so this
mechanism also provides an explanation for the observed
positive relationships between richness and biomass. Theory
also suggests that these sampling effects should be strongest
at the smallest scales: it is in small quadrats, where there are
fewer stems, that chance colonization plays the greatest role.
An alternative explanation for the positive relationships of

species richness to biomass and productivity is simply that all
three variables are positively related to stem density, and that
stem density varies locally within a forest plot. This mecha-
nism is of less biological interest than the classic species sam-
pling effects, niche complementarity and facilitation discussed
above, although the different mechanisms are by no means
mutually exclusive. Our estimates of the effects of species
richness on biomass and productivity after controlling for
stem density should be considered as lower bounds on the
true effect sizes, because our method of controlling for stem
density conservatively apportions all covariance between stem
density and biomass/productivity to the former. This lower
bound would coincide with the true effect size if variation in
stem density were the major determinant of richness, produc-
tivity and biomass, as might be the case if competition were
weak and there were considerable random variation in stem
density. The original analysis excluding the effect of stem
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Fig. 3. Strength of observed relationships of
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show site name abbreviations (Table 1).
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density (Fig. 2) gives an upper bound on the true effect size
that would be accurate if species richness were directly deter-
mined by productivity, biomass and stem density, as might be
the case if niche structure were very strong. In the absence of
a mechanistic model, it is difficult to say whether the true
effect of species richness on productivity and biomass is clo-
ser to the lower or upper bound, but this should be a priority
for future research.
The several negative relationships observed between

species richness and biomass at the 0.25 ha and 1 ha spatial
grains (Figs 2d,f and 3d,f) were unexpected and inconsistent
with sampling effects and niche complementarity and indicate
that different processes are operating at larger scales. One
possible mechanism underlying the negative relationships is
the successional process following disturbance (Horn 1974):
disturbed patches of forests have lower biomass (though usu-
ally not lower productivity) and are also likely to have higher
species richness, first because they contain more stems and
secondly because they may contain a mix of early- and late-
successional species; in older patches, a few high-biomass
individuals of late-successional species may dominate. This
successional effect should become weaker or even disappear
after controlling for stem number, because trees of all size
classes have similar (though not identical) species richness for

a given number of individuals (Condit et al. 1996). In con-
trast, the negative relationships in our analysis persisted when
stem number was controlled (Fig. 3d,f). Furthermore, the
most obvious disturbances in these forests are those associ-
ated with treefall gaps, which occur mostly at scales smaller
than our smallest spatial grain (Schnitzer & Carson 2001), a
scale at which we observed mostly positive relationships
between richness and biomass. Thus, successional mecha-
nisms alone seem insufficient to explain the observed negative
relationships.
We propose instead that the negative relationships between

species richness and biomass arise from the effects of envi-
ronmental variables. For example, productivity and biomass
may increase with soil fertility but plant species richness may
peak at intermediate soil fertility (Grime 1979). This would
lead to classic unimodal relationships of species richness to
productivity and biomass at large spatial extents that spanned
the entire productivity gradient, but positive or negative
monotonic relationships at the scale of a forest plot (Loreau
et al. 2001). This idea could feasibly be tested with data from
smaller plots over larger spatial extents in the same regions as
our study sites (e.g. Condit et al. 2002). More generally,
environmental effects could play a role in explaining site
differences even without large-scale unimodality. The mix of
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negative and positive relationships could be attributable to
variation in the species pool between regions (e.g. owing to
different regional abundances of rich and poor soils) and
hence variation in the relationship between species richness
and environmental variables (Schamp, Aarssen & Lee 2003;
Rahbek 2005).
Previous studies on the species richness–productivity rela-

tionship have used various surrogates for productivity, includ-
ing biomass (Whittaker 2010). Our results provide a clear
empirical demonstration of why this may not always be valid:
although biomass and productivity are generally positively
correlated within our sites (Fig. 4), their relationships to spe-
cies richness may differ. For example, at the largest spatial
grain, a few sites showed significantly negative relationships
between species richness and biomass (Fig. 3f), but no rela-
tionship between species richness and productivity (Fig. 3e).
In forests, at least, biomass and productivity should be treated
as separate ecosystem functions.
In view of our results showing scale-dependent relation-

ships of species richness to productivity and biomass, we rec-
ommend that models be developed to integrate large-scale
environmental information with small-scale sampling effects,
niche complementarity and stem density effects. The develop-
ment of such models should be informed by empirical investi-
gations into the pattern and scale of environmental factors
that drive local variation in richness, productivity and biomass
in forests. Ultimately, such research should reproduce rela-
tionships between richness, productivity and biomass in for-
ests across a range of spatial scales, thus demonstrating a
more general understanding of these relationships and
providing practical guidance for forestry and conservation
endeavours.
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Figure S1. Observed relationships between species richness and
coarse woody productivity (CWP) at the study sites at the 0.04 ha
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Figure S4. Observed relationships between species richness and
aboveground biomass (AGB) at the study sites at the 0.04 ha spatial
scale (as for Fig. 2b but with each site on a separate panel).

Figure S5. Observed relationships between species richness and
aboveground biomass (AGB) at the study sites at the 0.25 ha spatial
scale (as for Fig. 2d but with each site on a separate panel).

Figure S6. Observed relationships between species richness and
aboveground biomass (AGB) at the study sites at the 1.0 ha spatial
scale (as for Fig. 2f but with each site on a separate panel).

Figure S7. LOESS regressions of coarse woody productivity (CWP)
versus stem density at the 0.04 ha spatial scale.

Figure S8. LOESS regressions of coarse woody productivity (CWP)
versus stem density at the 0.25 ha spatial scale.

Figure S9. LOESS regressions of coarse woody productivity (CWP)
versus stem density at the 1.0 ha spatial scale.

Figure S10. LOESS regressions of aboveground biomass (AGB) ver-
sus stem density at the 0.04 ha spatial scale.

Figure S11. LOESS regressions of aboveground biomass (AGB) ver-
sus stem density at the 0.25 ha spatial scale.

Figure S12. LOESS regressions of aboveground biomass (AGB) ver-
sus stem density at the 1.0 ha spatial scale.

Figure S13. Cross-site relationship of productivity to 1 ha species
richness.

Figure S14. Cross-site relationship of biomass to 1 ha species rich-
ness.

Figure S15. Cross-site relationship of biomass to productivity.
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