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This article describes a method for detailed mapping of ecological variation in a tropical
rainforest based on field inventory of pteridophytes (ferns and lycophytes) and remote
sensing using Landsat Enhanced Thematic Mapper Plus (ETM+) imagery. Previously
known soil cation optima of the pteridophyte species were first used in calibration, i.e. to
infer soil cation concentrations for sites on the basis of their pteridophyte species com-
position. Multiple linear regression based on spectral reflectance values in the Landsat
image was then used to derive an equation that allowed the prediction of these cali-
brated soil values for unvisited sites in the study area. The predictive accuracy turned
out to be high: the mean absolute error, as estimated by leave-one-out cross-validation,
was just 7% of the total range of calibrated soil values. This method for detailed map-
ping of natural environmental variability in lowland tropical rainforest has applications
for land-use planning, such as wildlife management, forestry, biodiversity conservation,
and payments for carbon sequestration.

1. Introduction

Within the humid Amazonian forests, a few broad forest types have traditionally been sep-
arated on the basis of drainage conditions (seasonally inundated forests and swamp forests)
or the presence of characteristic soils (white sand forests). The majority of forests, how-
ever, lack such obvious distinguishing traits and fall under the broad category of terra firme
forest or ‘typical rainforest’. Due to their physiognomical uniformity, terra firme forests
are generally treated as one or just as a few classes in broad-scale vegetation maps. For
example, the relatively recent vegetation map of Brazil (IBGE 2004) only recognized two
terra firme forest types, namely ‘dense forest’ and ‘open forest’. It is not clear whether
these forest types differ in floristic composition or edaphic properties, so the classification
provides little information on ecological similarity among sites.

Field surveys carried out in different parts of Amazonia have documented consider-
able and interlinked floristic and edaphic variation within the terra firme forest. Site-to-site
differences in physical and chemical properties of soils (such as texture and nutrient con-
tent) are reflected in the distribution patterns of plant species, and congruent floristic
patterns have been found in taxonomically unrelated plant groups. Such soil-related dis-
tribution patterns have been documented especially for pteridophytes, Melastomataceae,

*Corresponding author. Email: anders.siren@utu.fi

ISSN 0143-1161 print/ISSN 1366-5901 online
© 2013 Taylor & Francis
http://dx.doi.org/10.1080/01431161.2012.723148
http://www.tandfonline.com

D
ow

nl
oa

de
d 

by
 [

Po
nt

if
ic

ia
 U

ni
 C

at
ol

ic
a 

de
l E

cu
ad

or
 ]

 a
t 1

4:
52

 2
4 

O
ct

ob
er

 2
01

2 

mailto:anders.siren@utu.fi


1562 A. Sirén et al.

palms, and trees (Gentry 1988; Duivenvoorden 1995; Tuomisto et al. 1995, 2002, 2003a,
2003b; Ruokolainen, Linna, and Tuomisto 1997; Vormisto et al. 2000, 2004; Duque et al.
2002, 2005; Phillips et al. 2003; Tuomisto, Ruokolainen, and Yli-Halla 2003; Ruokolainen
et al. 2007; Honorio Coronado et al. 2009; Zuquim et al. 2009; Higgins et al. 2011).
Consequently, any one of these plant groups can be used as an indicator of soil condi-
tions and, by inference, also of floristic patterns in the other plant groups (Ruokolainen,
Linna, and Tuomisto 1997; Duque et al. 2005; Ruokolainen et al. 2007).

An improved understanding of natural environmental variability in terra firme rain-
forests has made it obvious that the forests cannot be assumed to be homogeneous, which
has important practical implications. For example, terrestrial animals, especially herbi-
vores, may perceive differences in habitat quality among sites with different kinds of soil.
If primary productivity and plant species composition vary due to soil differences, the kinds
and quantities of available edible plants will also vary. Furthermore, plants growing on
nutrient-deficient soils seem to be generally better defended against herbivores and conse-
quently provide lower quality food (Janzen 1974; Gartlan et al. 1980; Coley, Bryant, and
Chapin 1985). There are indications that abundance and species composition of animals in
terra firme forests is related to the fertility of soils (Salovaara 2005; Pomara et al. 2012),
which has implications for hunting.

This study is aimed at producing information on environmental variability to help inter-
pret the results of other studies in the same area. For example, it has been found that
although the number of animals the hunters of a local village caught in different parts
of their hunting range could largely be explained by spatial variation in the hunting effort
(Sirén, Hambäck, and Machoa 2004), there were also significant deviations from this pat-
tern, which gave rise to the hypothesis that animal abundance may also vary naturally due
to habitat heterogeneity.

Because of the potential ecological importance of habitat variability in tropical rain-
forests, methods are needed to recognize and map such variability in an accurate and
cost-effective way. Field inventories provide point data from the actual inventory localities,
and remote-sensing methods can be used to map large continuous areas with high spatial
resolution. However, even distinguishing secondary succession from old-growth forest by
means of remote sensing is complicated in tropical rainforest areas (e.g. Lu et al. 2003; Lu,
Moran, and Batistella 2003; Vieira et al. 2003; Sirén and Brondizio 2009). Distinguishing
different types of old-growth terra firme forest from each other is even more challenging,
but some recent studies have nevertheless succeeded in separating a few forest types repre-
senting soils of different geological origins (Tuomisto et al. 2003a, 2003b; Salovaara et al.
2005; Thessler et al. 2008; Higgins et al. 2011).

The difficulty in distinguishing different types of terra firme rainforests from each other
has to do with the fact that over broad areas, the forest is relatively homogeneous in struc-
tural terms, all being multi-species broadleaf forests with closed canopy. Consequently,
the forest is also spectrally relatively homogeneous at the scales relevant for mapping.
Although there may be differences in terms of forest structure, species composition, or
spectral reflectance, ground truthing these is difficult. Moreover, any differences between
forest types may go unnoticed when they are obscured by other kinds of variability within
the forest types. This is particularly the case in regions with rugged terrain, where solar
illumination varies considerably between shaded and sunlit slopes. Correcting for such
topographic effects is in itself a major challenge (cf. Riaño et al. 2003; Twele and Erasmi
2005; Thessler et al. 2008; Gao and Zhang 2009).

A final constraint to the use of remote-sensing methods in mapping environmental
variability in terra firme forests is that discrete environmental or vegetation types are not
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easy to either define or recognize in structurally uniformly complex, species-rich vege-
tation. Ground truthing of image classifications is therefore much more difficult than in
less species-rich or structurally more variable forests. Describing the forests on the basis
of continuous variables representing ecological characteristics, such as soils, may there-
fore be more practical than classifications based on discrete vegetation classes, even in
remote-sensing applications (cf. Thessler et al. 2005).

The objective of this study is to develop a method to map natural environmental
heterogeneity in terra firme tropical rainforest on the basis of floristic inventory and remote
sensing. Satellites register radiation mostly from the canopy, which consists of trees and
lianas, but the plants in all strata of the forest react to the same variation in the underly-
ing soils. This is the justification for using one plant group as an indicator of both soil
conditions and more general floristic patterns (Ruokolainen, Linna, and Tuomisto 1997;
Tuomisto et al. 2003a, 2003b; Ruokolainen et al. 2007; Higgins et al. 2011). Therefore,
we analyse the relationship between spectral signatures of the canopy and trends in plant
species composition in the field and take advantage of previously known relations between
the plant species and edaphic conditions to recognize a soil gradient in the study area.
Finally, we produce a map, which provides an estimate of the spatial distribution of the soil
gradient in the study area.

2. Materials and methods

2.1. Study area

The study was carried out in a tropical rainforest in Ecuadorian Amazonia (Figure 1). The
study area is about 1300 km2, and it coincides with the study area of Sirén, Hambäck,
and Machoa (2004), who studied hunting by the people of the Sarayaku community (1◦44′
S, 77◦29′ W). There are no roads in the area, so all transport is by foot or river. Mean
annual temperature in the area is about 23◦C, and the average annual precipitation is
3000–3500 mm. Local inhabitants recognize a major rainy season in May–June, a dry
season in July–August, and a minor rainy season in December–January (Sirén 2004).
Interannual variation in total rainfall, as well as variation in the timing of the seasons,
is, however, high. The area is characterized by a rugged topography, which is shaped by
tectonic uplift and landslides (Bès De Berc et al. 2005). The highest peaks in the north-
west reach 640 m a.s.l., whereas in the southeast they do not surpass 500 m a.s.l. As the
Bobonaza River flows through the area, its elevation decreases from 390 to 330 m a.s.l.
Occasionally, heavy rains cause flooding of the alluvial plains of the Bobonaza as well as
of smaller rivers or creeks, but the water also withdraws rapidly, so there are no seasonally
flooded varzea forests in the area. Swamp forests with dense stands of Mauritia flexu-
osa occur only as dispersed patches, the total area of which is negligible in comparison
with the total forest area. Agricultural fields and anthropogenic secondary forests (fallows)
cover about 4% of the total area and are concentrated near villages and navigable rivers
(Sirén 2007). Small patches of natural secondary forest also exist as a result of landslides
or storms, but most of the area is covered by old-growth terra firme forest.

2.2. Field inventory

The sites for floristic transects were selected in such a way that they got fairly evenly dis-
tributed throughout the study area (Figure 1). Whenever possible, transects were located
near existing hunting trails, because travel through the forest in the absence of trails was
extremely slow. A total of 36 transects were established, and each transect was 2 m wide
and 500 m long. In order to cover the full range of the topographic variation, two nearby
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Figure 1. Top: Shuttle Radar Topography Mission (SRTM) digital elevation model of the study area
in Ecuadorian Amazonia. Bottom: A Landsat ETM+ image over the study area (band 5 = red, band
4 = green, and band 3 = blue. The image shown here has not yet been corrected for topographic
shade effects. The black stripes are data gaps due to the SLC-off mode as explained in the main text).
The yellow line denotes the limits of the study area, and the red dots indicate the locations of the
floristic transects. The location of the study area in Ecuador is indicated by the red area in the inset.
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transects were always taken to represent different parts of the local topography. One transect
started at a creek or a river and went upwards at an approximately right angle to the main
direction of the drainage network. The other transect started 50 m behind the top of a ridge,
then passed the top of the ridge and continued downwards, approximately at a right angle
to the main direction of the drainage network.

Each transect consisted of a narrow straight trail opened with a machete in the selected
compass bearing. Transects were at first measured with a measuring tape, taking care to
measure horizontally even in steep terrain, and georeferenced with a Garmin Etrex Vista
Cx GPS receiver (Garmin, Inc., Olathe, KS, USA). A Garmin Etrex Vista HCx receiver
was found to be more reliable and was later used both for georeferencing and for measuring
transect length.

Because floristic inventories in tropical rainforests are very laborious, pteridophytes
(ferns and lycophytes) were used as indicators of floristic and edaphic patterns in the
study area. Pteridophytes have three important advantages in this context. First, they are
relatively easy to observe, collect, and identify, which speeds up fieldwork and makes it
possible to inventory more transects. Second, they are relatively abundant but not exces-
sively species rich, which facilitates obtaining robust sample sizes within the transects
(Ruokolainen et al. 2007; Jones, Tuomisto, and Olivas 2008). Third, information on the
distribution of Amazonian pteridophytes along edaphic gradients already exists from other
sites, which makes it possible to use pteridophyte species composition to infer edaphic
properties for a site.

For this purpose, a list of pteridophyte species was prepared for each transect. All ter-
restrial individuals with at least one green leaf longer than 10 cm were considered, as
well as those epiphytic and climbing individuals that had such leaves below 2 m height.
Although epiphytes have no direct connection with the soil, including them has been the
common practice in these kinds of inventories (e.g. Tuomisto et al. 2003a, 2003b). This is
because many species are able to grow both on the ground and epiphytically, and often it
is difficult to establish whether a particular individual has a soil connection. All floristic
surveys were done by the same person (AS) with some training in identification of herbar-
ium specimens but without previous experience of pteridophyte inventories in the field.
Therefore, voucher specimens of all observed species were initially collected for identifi-
cation by an expert on Ecuadorian ferns (HN). Based on photographs of these identified
voucher specimens, a simple photo guide was prepared and then used in the field for the
subsequent transects. Eventually, most species could be identified in the field, but voucher
specimens were nevertheless collected for verification. The time needed to survey a sin-
gle 500 m transect was thus reduced from 5 days in the beginning to 2–4 h towards the
end of fieldwork. All voucher specimens were finally identified by HT to ensure that the
species concepts matched those used in Tuomisto, Ruokolainen, and Yli-Halla (2003). This
was necessary to calculate soil cation content optima for each pteridophyte species for the
purposes of calibration (to be described below).

2.3. Analyses of floristic data

Floristic relationships among the transects were visualized using ordination and cluster-
ing methods. Floristic similarities between transects were first quantified using the Jaccard
index (CJ = a/(a + b + c), where a is the number of species shared between two transects,
b is the number of species only found in the first transect, and c is the number of species
only found in the second transect).

For ordination, the Jaccard index values were converted to dissimilarities by subtract-
ing them from unity, and the resulting dissimilarity matrix was subjected to principal
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coordinates analysis (PCoA). This ordination method aims at concentrating information
from the dissimilarity matrix such that the compositional dissimilarities can be visualized
using just a few dimensions. Clustering of the transects was carried out using the pro-
portional link linkage algorithm. This is a hierarchical agglomerative clustering method
that joins transects into groups on the basis of their pairwise floristic similarity (here it
is based on the Jaccard index). Connectedness was set at 0.5 (i.e. midway between sin-
gle and complete linkages; Legendre and Legendre 1998). The clustering results provide
insights into the compositional data that are complementary to those obtained by ordination.
These analyses together provide the background information needed for making inferences
concerning environmental variation in the study area.

Soil cation content in the transects was estimated using calibration, which is a standard
method in ecology (Jongman, Ter Braak, and Van Tongeren 1995). Calibration is based on
the idea that any one plant species only occurs in a part of any environmental gradient, and
that its occurrence is most frequent and its abundance highest at sites that are closest to its
optimum conditions. Species optima for a given environmental variable can be estimated
as an average of the variable values in the sites where the species have been observed.
The value of the variable at a new site can then be estimated as an average of the optima
of those species that occur at the site. For this purpose, soil cation content optima for
the pteridophyte species occurring in our transects were first calculated using data from
134 other transects situated in Ecuador, Colombia, and northern Peru. These transects had
been established using a method similar to ours, but both pteridophyte species composition
and soil cation content data were available (Tuomisto, Ruokolainen, and Yli-Halla 2003
and unpublished data). Those species observed in this study but not in the previous ones
were excluded from this analysis. For each species, its soil cation optimum was calculated
as a weighted arithmetic mean of the soil cation content in the transects where the species
had been observed, with species abundance (number of individuals) in each transect used
as the weight. The optima were then used to estimate soil cation content for each transect
of this study by calculating the mean of the optima of all those species that occurred in the
transect in question. This mean was unweighted because species abundance information
was not collected in this study. The resulting numbers are here referred to as ‘calibrated
soil values’.

2.4. Estimation of soil values based on image data

For image interpretation, a Landsat Enhanced Thematic Mapper Plus (ETM+) image (path
9, row 61) acquired on 2 July 2005 was used (Figure 1). This image was in scan line
corrector (SLC)-off mode, implying that there were data gaps due to a technical problem
of the satellite sensor. Fortunately, the study area was at the centre of the scene, where
the least number of data gaps are present. Both such SLC-off data gaps and pixels rep-
resenting water or river beaches were masked out prior to image analysis. Radiometric
calibration of the image data to convert digital number (DN) values to physical at-sensor
radiance was done according to Green, Schweik, and Hanson (2002). A number of pro-
cedures for atmospheric and topographic correction were tested. The best performance
was achieved by combining atmospheric correction using the dark object subtraction
and topographic correction method and by applying the equal area normalization algo-
rithm of Erdas Imagine (Intergraph, Corp., Huntsville, AL, USA), also called the internal
average relative (IAR) reflectance (Kruse 1988; Zamudio and Atkinson 1990), to each
pixel. A detailed comparison of different preprocessing procedures will be presented
elsewhere.
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The spectral signatures in the satellite image and the calibrated soil values for the
transects were used to obtain a regression equation to estimate soil values over the entire
study area. To collect spectral signatures, the GPS points of each 500 m floristic transect
were displayed on screen, and a 200 m × 600 m rectangle was placed on top of each
transect. An average spectral signature was registered for each rectangle using Landsat
bands 1–5 and 7. Multiple regression was then performed to model the calibrated soil val-
ues as a linear function of spectral signatures in the six bands. Stepwise multiple regression
was used in order to exclude from the regression equation those bands that did not have a
statistically significant contribution to explaining the variation in the calibrated soil values
(with criteria p ≤ 0.05 for entry and p ≥ 0.10 for removal).

Before using the regression equation to extrapolate soil values to the whole image,
some additional image processing was done. Existing information on land use in the area
(Sirén 2007; Sirén and Brondizio 2009) was used to mask out areas that were known or
suspected to be cultivated land or anthropogenic secondary forests (fallows). The land-use
mask included all land within a 50 m buffer around pixels classified as cultivated land in
1987 or as fallows in either 1987 or 2001; a 150 m buffer around pixels classified as culti-
vated land in 2001; and a 200 m buffer around navigable rivers. After the land-use mask,
a focal mean filter was applied to the image in order to remove such variation on a small
spatial scale, which is likely to represent noise rather than relevant ecological informa-
tion. This filter was given a radius of 195 m, such that its area was approximately equal
to that of the rectangles used to collect spectral signatures. Applying the focal mean filter
also filled the data gaps caused by the SLC-off mode. A side effect was that even pixels
that had previously been excluded with the land-use mask were again given DN values,
but these were eliminated by a second application of the land-use mask. An estimated
soil value was then calculated for each pixel in the scene using the multiple regression
equation.

The error in the soil values estimated from the Landsat data in relation to the orig-
inal soil values obtained by calibration was quantified by leave-one-out cross-validation.
In this validation method, one transect is set aside to be used as the test set, and the remain-
ing 35 transects are used as the training set to parameterize the regression equation. Each
transect is then used as the test set in turn, and the estimated soil values obtained in this way
for the test transects are compared with the original calibrated soil values. This provides a
measure of the expected accuracy of the results when the regression equation is applied
over the entire Landsat scene.

3. Results

3.1. Ordination, clustering, and calibrated soil values

The total number of pteridophyte species observed in the 36 transects was 182, but some
closely related species were confused in the field and were consequently lumped. The
numerical analyses were therefore run with 171 broadly circumscribed species (gamma
richness Rγ = 171 species). On average, the transects contained 46 species (alpha richness
Rα = 46 species/transect). Rγ is 3.7 times as large as Rα, which indicates that the amount
of compositional heterogeneity (beta richness Rβ) in the data corresponds to what would
be observed among 3.7 transects that share no species. The pairwise Jaccard index similar-
ity values that were calculated between transects ranged between 0.13 and 0.65, with the
average being 0.37.

PCoA showed that there is a strong compositional gradient in the floristic data. This
is mainly captured along Axis 1, but there is also indication of an arch (transects at both
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Figure 2. Top: The positions of 36 transects of 2 m × 500 m along the first two axes of PCoA
based on floristic differences of pteridophytes (one-complement of the Jaccard index). Bottom: The
geographical distribution of the same 36 transects in the study area in Ecuadorian Amazonia. In both
panels, the size of the circle corresponding to each transect is proportional to the calibrated soil
value (estimated using floristic data), and the colours indicate to which of seven recognized floristic
classes each transect belongs (proportional link linkage clustering with connectedness 0.5 based on
the Jaccard index).
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extremes of the gradient have higher values along Axis 2 than transects at the middle of
the gradient do; Figure 2, top). Seven transect classes were recognized in the clustering
analysis, and each one of these is restricted to a specific part of the floristic gradient.
This supports the results of the ordination and suggests that the interpretation of the main
floristic gradient would not be drastically changed even if the higher ordination axes were
considered.

Calibrated soil values, which approximate soil cation content values, are highest in the
leftmost end of the floristic gradient and gradually decrease towards the rightmost end. The
Pearson correlation between calibrated soil values and ordination scores along Axis 1 is
very high (correlation coefficient, r = 0.95, p < 0.001), which indicates that the floristic
gradient is strongly related to an edaphic gradient. Although measured soil cation contents
were not available to verify this relationship, the regularity of the pattern confirms that the
species found in this study associate with each other in similar ways as they do in other
areas. If this were not the case, species that had high optimum values in other areas would
be mixed with species having low optimum values in this study area, which would lead
to all sites obtaining calibrated soil values close to the overall average. The fact that the
calibrated soil gradient was tightly linked with the local floristic gradient supports the use
of the obtained calibration results in the rest of the analyses.

When projected on the map of the study area (Figure 2, bottom), the clustering and
calibration results suggest that there is an east–west gradient in soil fertility: the areas to the
east have, in general, lower calibrated soil values than the areas to the west (Pearson corre-
lation between longitude and calibrated soil value: r = −0.63, p < 0.001). Some transects,
however, deviate from this general pattern. In particular, transects 2, 8, and 13 were all
assigned to the same floristic cluster and have relatively low calibrated soil values, but they
occur in the western part of the study area, where all other transects have much higher
calibrated soil values.

3.2. Estimation of soil values based on spectral signatures

A linear multiple regression model was obtained to predict soil values for unvisited sites
based on spectral reflectances in the Landsat ETM+ image. The stepwise regression pro-
cedure eliminated bands 2 and 4, so the final regression model used the Landsat bands 1, 3,
5, and 7 (adjusted coefficient of determination, R2 = 0.85). When the soil values obtained
from calibration were compared with those estimated from the Landsat data using leave-
one-out cross-validation, the Pearson correlation between the estimated and calibrated soil
values was 0.91 (p < 0.001). The mean absolute error of these estimates was 0.40 cmol(+)
kg–1 (centimoles of positive charge per kilogram of soil) corresponding to just 7% of the
range between the minimum and maximum calibrated soil values (Figure 3).

The final map of spectrally estimated soil values based on the corrected image is shown
in Figure 4. In general, estimated soil values increase in the upriver direction, although
several local deviations from this general pattern can be seen. Some such deviations seem
to be related to geological features, such as the plateau at high altitude in the northwest
corner of the study area, where estimated soil values are rather low.

4. Discussion

4.1. Assessment of the methods

Our results support earlier suggestions that pteridophyte inventory in combination with
remote sensing is an efficient tool for the mapping of habitat variability in tropical
rainforests (Tuomisto et al. 1995, 2003a, 2003b; Salovaara, Cárdenas, and Tuomisto 2004;
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Figure 3. Calibrated soil values plotted against estimated soil values. Estimated soil values are
calculated using multiple regression of calibrated soil values against spectral reflectances on an
atmospherically and topographically corrected Landsat ETM+ satellite image using leave-one-out
cross-validation. Each point represents one field transect site.
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Figure 4. Map of estimated soil values in the study area in Ecuadorian Amazonia. The soil values
provide an approximation of the concentration of exchangeable bases in the soil (Ca, K, Mg, and Na
in cmol(+) kg–1). Estimated values were obtained with a multiple linear regression, where spectral
values of Landsat ETM+ bands 1, 3, 5, and 7 were used as the independent variables. The regression
equation was parameterized with soil values obtained from calibration, i.e. on the basis of pterid-
pohyte species composition in 36 field transects. All calibrated soil values were within the range
3.3–9.3 cmol(+) kg–1, so estimated values outside this range need to be interpreted with caution.
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Salovaara et al. 2005; Thessler et al. 2005; Higgins et al. 2011). Earlier studies on
Amazonian pteridophytes have demonstrated a tight correspondence between pteridophyte
species turnover and differences in soil cation content, which implies that the former can
be used as an indicator of the latter (Ruokolainen, Linna, and Tuomisto 1997; Tuomisto
et al. 2003b; Tuomisto, Ruokolainen, and Yli-Halla 2003; Ruokolainen et al. 2007; Higgins
et al. 2011). We found a clear linkage between the main floristic gradient observed in
the pteridophyte data and the spectral reflectance of the forest canopy. Since the inven-
toried pteridophytes are small understorey plants, they have no direct influence on canopy
reflectance, which is determined mostly by canopy trees and lianas. The correlation arises
because both understorey plants and canopy plants react to soil properties, such as cation
content, which in this study was approximated by the ‘soil value’ inferred from pteridophyte
species composition.

There is a long tradition of using indicator plant species and calibration to infer soil
properties from plant species composition in boreal and temperate areas (Cajander 1926;
Ellenberg et al. 1991; Jongman, Ter Braak, and Van Tongeren 1995; Diekmann 2003;
Schmidtlein 2005). The high similarity between the floristic gradient obtained by ordination
and the edaphic gradient reconstructed using calibration suggests that the same principle
works even in high-diversity tropical forests. Since cation content is one aspect of soil
fertility, the reconstructed edaphic gradient can be assumed to reflect potential primary
productivity of the forests. It may also be related to other ecosystem properties, such as
standing biomass, forest dynamics, or animal distributions (Quesada et al. 2009; Slik et al.
2010; Pomara et al. 2012).

The correlation between spectral signatures and calibrated soil values is very high in our
data, which indicates that the latter reflect a relevant ecological property of the study sites.
However, the accuracy of these calibrated values as estimates of soil cation concentration
has not been tested with actual soil data, which is why we have used the less specific term
‘soil value’ in this article. In general, calibration can be expected to underestimate the range
of soil cation content values, because the method is based on iterative taking of means. The
calibrated soil cation content estimates are means of species optima, which themselves are
means of the original soil cation content measurements in the background data. In both
cases, the minimum value of the means will be larger and the maximum value smaller than
the corresponding extreme values in the original data. As a result, calibration leads to the
soil cation contents of the cation-poorest sites to be overestimated and the cation contents
of the cation-richest sites to be underestimated. Nevertheless, the obtained values provide a
relative measure by which environmental variability in the study area can be estimated and
mapped.

The soil values obtained by calibration in our data set correspond to soil cation con-
tents in the range 3.3–9.3 cmol(+) kg–1. The total range of soil cation content values in
the background data set used to calculate soil cation optima was 0.8–27 cmol(+) kg–1.
The difference in range must partly depend on the calibration process, as explained above.
However, those species that were limited to the most cation-poor soils in the background
data set were entirely absent from the present data set, which suggests that the cation-
poorest soils were also absent. It is also noteworthy that the background data set included
mostly sites with low to intermediate soil cation contents, and only a few sites with cation
contents exceeding 10 cmol(+) kg–1. It is therefore likely that the soil cation optima
for those species associated with the cation-richest soils were underestimated, and the
maximum soil cation content estimate of 9.3 cmol(+) kg–1 is an underestimate as well.
In addition, about 25% of the species observed in the present data set could not be assigned
an optimum value at all, because they were not present in the background data set, and
could therefore not be used in calibration.
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4.2. Applications

To successfully protect biodiversity, conservation area networks need to include a sufficient
representation of the entire range of habitat variability in all regions. Broad-scale maps
of environmental and floristic variation are needed to assess how well this goal has been
reached and to identify areas that should be prioritized in future conservation actions. The
method used in this article provides one means to produce such maps.

The estimation of soil characteristics could also be used in land-use planning in order
to direct agricultural development to fertile areas. This would help avoiding such errors as
have been done in the past, when agricultural expansion has been targeted to areas where
soils have been too poor for the intended crops (e.g. Fearnside 1986). At the same time,
the method may be proactively used by conservationists to identify forests that may be at
increased risk of conversion to agriculture due to their high soil fertility.

Since general forest productivity is affected by soil properties, understanding the
heterogeneity in soils is also important for estimating sustainable levels for the harvest-
ing of forest products such as timber or game animals. Earlier studies have found that game
animal abundance (as estimated from catch per unit of hunting effort) is spatially variable
in our study area (Sirén, Hambäck, and Machoa 2004 and unpublished data). Human hunt-
ing effort itself explained much of this variability for all important game species, but other
factors seemed to complicate the picture. This study was motivated by the need to find out
whether mammal abundance varies naturally in response to variability in soil productivity,
not just as a result of human hunting pressure. The map of estimated soil values produced
here (Figure 4) will provide the means to test this hypothesis. The local community is con-
cerned about the sustainability of hunting in its territory and has set aside no-take areas
for wildlife in order to ensure long-term sustainability of hunting (Sirén 2006). Even when
intentions are good, however, failure to recognize spatial variability of wildlife habitats may
lead to suboptimal harvest strategies and put sustainability at risk (Jonzén, Lundberg, and
Gårdmark 2001). Spatial information on environmental variability, and on how game pop-
ulations react to this variability, may be useful when deciding about the location and size
of no-take areas, as well as when evaluating their performance.

The United Nations Reduced Emissions from Deforestation and Degradation (REDD)
programme aims to establish mechanisms for monetary compensation for maintaining car-
bon stocks in forests. In the southern part of Peruvian Amazonia, it has been found that
carbon stocks vary considerably both among and within 25 mainly topographically defined
forest types (Asner et al. 2010). Soil properties can be expected to be among the ulti-
mate determinants of carbon stocks, but the exact relationships are not yet well understood
(Laurence et al. 1999; Clark and Clark 2000; Quesada et al. 2009). Including information
on edaphic characteristics, either directly by soil chemical analyses or indirectly by floristic
inventory of indicator species, can therefore be expected to improve the accuracy of the
models used to estimate carbon stocks over large areas.
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