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Abstract

Bridging the gap between the predictions of coarse-scale climate models and the fine-scale climatic reality of species is a
key issue of climate change biology research. While it is now well known that most organisms do not experience the
climatic conditions recorded at weather stations, there is little information on the discrepancies between microclimates and
global interpolated temperatures used in species distribution models, and their consequences for organisms’ performance.
To address this issue, we examined the fine-scale spatiotemporal heterogeneity in air, crop canopy and soil temperatures of
agricultural landscapes in the Ecuadorian Andes and compared them to predictions of global interpolated climatic grids.
Temperature time-series were measured in air, canopy and soil for 108 localities at three altitudes and analysed using
Fourier transform. Discrepancies between local temperatures vs. global interpolated grids and their implications for pest
performance were then mapped and analysed using GIS statistical toolbox. Our results showed that global interpolated
predictions over-estimate by 77.5610% and under-estimate by 82.1612% local minimum and maximum air temperatures
recorded in the studied grid. Additional modifications of local air temperatures were due to the thermal buffering of plant
canopies (from 22.7uK during daytime to 1.3uK during night-time) and soils (from 24.9uK during daytime to 6.7uK during
night-time) with a significant effect of crop phenology on the buffer effect. This discrepancies between interpolated and
local temperatures strongly affected predictions of the performance of an ectothermic crop pest as interpolated
temperatures predicted pest growth rates 2.3–4.3 times lower than those predicted by local temperatures. This study
provides quantitative information on the limitation of coarse-scale climate data to capture the reality of the climatic
environment experienced by living organisms. In highly heterogeneous region such as tropical mountains, caution should
therefore be taken when using global models to infer local-scale biological processes.
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Introduction

Bridging the gap between the predictions of coarse-scale climate

models and the fine-scale climatic reality of species is increasingly

recognized as a key issue of climate change biology research

[1,2,3,4]. Despite decades of study on microclimates [5,6,7,8] and

evidence for habitat-related and topographical variations in local

temperatures and their relevance for species ecology

[2,9,10,11,12,13], most attempts to understand and model species

distributions still do not integrate spatially-explicit fine-scale

climatic data (e.g. [14,15,16]). Many work use global model of

temperature interpolation to examine species vulnerability to

climate change and, doing so, ignore the critical issue of habitat

complexity in climate buffering [4,5,17]. Indeed, climate surfaces

used in species distribution models (SDMs) are rarely generated or

interpolated to a resolution finer than 1 km2 (e.g. WorldClim

database), a resolution that is still very coarse relative to the home

ranges or body size of most species [13,18]. For instance, [8]

showed that climate grid lengths used in SDMs are, on average,

,10,000-fold larger than studied animals, and ,1,000-fold larger

than studied plants. Their meta-analysis showed that the

WorldClim was the most widely used climatic dataset in global

SDMs. As this commonly used coarse scale climatic data in SDMs

overlook the spatiotemporal thermal heterogeneity experienced by

organisms, there is an urgent need for a more sophisticated use of

these datasets for making inferences about biological processes that

are driven by hour to hour operative temperatures of organisms.
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An important yet poorly studied issue in climate change biology

is to quantify to what extent climatic conditions differ between

widely used 1 km2 interpolated grid cells of global climatic

database and real-world landscapes of similar areas. While it is

now well-known that most organisms, especially tiny ectotherms

such as insects and other arthropods, do not experience the

climatic conditions recorded at weather stations [9,12,18], there is

little quantitative information on the spatial and temporal

heterogeneity at the landscape scale of local climatic conditions

(i.e. conditions at biologically relevant scales, e.g., from cm to km

for insects) and their consequences for organisms’ performance. A

better quantification of the climatic conditions of ecologically-

relevant habitats over relatively large landscape scales (e.g., 1 km2)

is therefore a necessary first step to better incorporate dynamical

microclimate into global distribution models.

Here, we investigate the sources of variance between global

interpolated and local temperatures by examining 1) how well

WorldClim predicts local air temperatures in our study region (the

tropical Andes), 2) to what extent temperatures in crop canopies

and soils differ from local air temperatures, and 3) how relevant is

to use WorldClim to infer the potential performance of an insect

crop pest. Addressing these questions is not an easy task as the

mosaic of climatic habitats relevant for small ectothermic species

at a 1-km2 scale in real-world landscapes may be outstandingly

complex. In this study, we focused on highland agricultural

landscapes of the tropical Andes as most prior similar data came

from low elevation and temperate agroecosystems. In such

systems, most crop pests experience, over their entire life cycle,

climatic conditions in three well-defined environmental layers (air,

air inside-canopy and soil) and these conditions are remarkably

stable over the year [19]. In this context, we firstly decided to map

over replicated 1-km2 climatic grid cells the ecologically relevant

local temperatures for ectothermic crop pests in agricultural

landscapes, and to compare these maps to interpolated temper-

ature grid cells of the widely used WorldClim database. We used

Fourier analysis applied to local temperature time-series as a tool

to fit daily variations of temperature and to feature microclimate

discrepancies in space and in time (both in terms of amplitude and

phase). We then explored the implication of our thermal landscape

mapping for pest performance by comparing temperature

frequencies in our grid cells with the temperature-dependent

growth curve of the potato tuber moth (Phthorimaea operculella) a

major crop pest species in the region and worldwide.

Materials and Methods

1. Study area
The Ecuadorian Andes are characterized by a low seasonality,

with mean temperatures varying more within days (up to 30uK
variation) than within months and years (less than 0.6uK and

0.2uK variations, respectively, see [19]). This region exhibits a

marked altitudinal gradient in temperatures (between 2000 and

4000 m) with mean monthly air temperature roughly decreasing

by 0.6uK every 100 m of elevation [20]. Agricultural landscapes

dominate the altitudinal belt between 2600 and 3800 m, and are

typically composed by small field crops (mainly potato Solanum
tuberosum L., broad bean Vicia faba L., corn Zea mays L., alfalfa

Medicago sativa L., and pasture), natural grasslands (páramos) and

a few forest patches [21]. Under the climatic conditions of the

region, crops can be planted and harvested all year round, thereby

creating a landscape mosaic of a wide variety of crops at different

phenological stages.

Our study area was located 115 km south from the equatorial

line (01u019360S, 78u329160W) in the Cotopaxi province of

Ecuador. It spread out on a 20-km2 elevation transect

(2.3568.5 km), ranging from 2,600 to 3,800 m a.s.l. The gradient

had a Southwest exposure and an average slope of 9.5u (65.2)

(based on a 30 m resolution digital elevation model). To

investigate the elevation effect on local vs. global interpolated

temperature variations, we divided our study area into three

400 m altitudinal belts which correspond to natural floors in the

hillside (2,600–3,000 m, 3,000–3,400 m, and 3,400–3,800 m) with

a mean monthly temperature of 13.260.4uC, 10.860.6uC, and

9.360.4uC, respectively. Beyond temperature, these belts also

differed in terms of landscape composition (Appendix S1 in

Supporting Information), with lower elevations dominated by

small fields (0.360.1 Ha) of potato, corn, broad bean, and pasture

while the higher band had larger fields (0.760.3 Ha) of mainly

potato and pasture. Working in these agricultural landscapes no

requires specific permissions expect the kind agreement of the field

owner. The presented study did not involve endangered or

protected species.

2. Temperature data collection
In each of the three-altitudinal belts, we measured temperature

regimes in six habitats (five crops and natural grasslands) where

insect pests can be found. In each habitat, we defined three layers:

air, air inside-canopy (referred as ‘‘air canopy’’ in the text) and soil.

These layers are all used by most insect pests over their life cycle:

air layer by adults, air canopy layer by adults and leaf-eating larvae

and pupae, soil layer by tuber feeding larvae and pupae. In each

layer of each habitat, temperature was recorded with a 1 min time

step using data loggers (Hobo U23-001-Pro-V2 internal temper-

ature loggers, Onset Computer Corporation, Bourne, USA) with

an accuracy of 60.21uK over the 0–50uC range and a resolution

of 0.02uK at 25uC. According to [4], 1) air loggers were fixed on a

wooden stake at 1 m high to overstep most crop canopies and

sheltered by a 20 cm2 white plastic roof to minimize solar

radiation heating; the roof was itself placed 5 cm above the logger

to avoid warming by greenhouse effect, 2) air canopy loggers were

placed 0.3 m high inside vegetation 5 cm bellow large leaves to

minimize the effect of direct solar radiation and 3) soil loggers were

buried 0.1 m into the ground where roots and tubers grow (see

Appendix S2 for photographs). In each field, only one logger per

layer measured the temperatures. Those triplets of loggers were

located at the centre of the field to avoid edge effect (see Appendix

S3 for an analysis of the spatial variability of temperatures within a

field and [22]). As vegetation land cover influences microclimate

beneath and around plants, see [5,6], we repeated these 54

measurements (3 elevations66 habitats63 layers) for three classes

of leaf area index (LAI) [23] defined as follows: 0 (bare soil), 0.01–

0.5 for and .0.5 of LAI. Minimum LAI was fixed to 0.01 to avoid

confusion with bare soil and allowed enough leaf area to place the

loggers underneath. At each measurement site, LAI values were

visually estimated (twice) measuring the ratio of leaf area within a

1-m2 quadrant sub-divided into 0.1 m2 cells delimited by strings.

This indirect method did not account for leaves that lie on each

other however it relates to shaded areas that influence inside-

canopy and soil microclimates [23].

Each of the 162 measurement combinations (3 altitudinal belts

66 habitats 63 layers 6 3 LAI classes) was replicated 1–3 times

depending on availability of habitats at a given elevation and

phenology stage. In total 324 independent temperature time series

were acquired over 15 days between September and December

2011 (data available in Appendices S9, S10 and S11). Importantly,

under the climatic conditions of the study area, 15-days time series

characteristics did not differ from those obtained over one year

(see Appendix S4 for details). At each measurement site, we

Local Temperatures vs. Climatic Grids

PLOS ONE | www.plosone.org 2 August 2014 | Volume 9 | Issue 8 | e105541



recorded the UTM-WGS84 geographic coordinates with a

handheld GPS Garmin Oregon 550 (Garmin, Olathe, USA).

3. Global solar radiations
Infrared and visible radiations (expressed in Watt/m2) were

monitored in each altitudinal belts using a LI-1400 LI-COR

datalogger equipped with a LI-200 pyranometer sensor (LI-COR,

Lincoln, USA) placed perpendicular to gravity. Between 9:00 AM

and 4:00 PM, mean global solar radiations ranged from 500 to

1000 watts/m2, with temporal variability mainly induced by short-

term changes in cloud cover.

4. Data analyses
4.1. Times series analyses using Fourier

transforms. Air and air canopy temperature time series showed

extreme events during a few minutes that were certainly due to

strong radiations experienced at the study sites 2 these affected

loggers recording despite their plastic roofs. Therefore, we found

Figure 1. Fit of temperature time series with discrete Fourier transforms at the daily frequency Kd. Air temperatures are in blue, crop
canopy temperatures are in green and soil temperatures are in brown.
doi:10.1371/journal.pone.0105541.g001
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relevant to fit our time series data with a discrete Fourier transform

(DFT) at the daily frequency kd (Fig. 1) as this allowed averaging

daily minimum and maximum temperatures while limiting the

effect of short extremes (mainly for maximum). Moreover fitting

temperature time series with the DFT allowed us to circumvent (or

partially resolve) the issue of comparing time series with different

temporal resolution: a sinusoid built from a daily time step time

series will be accurate enough to compare with another sinusoid

built from a one minute time step time series (our operative

temperatures vs. global climatic models).

DFT analyses allowed us estimating two important descriptors

of the time series at the daily frequency kd: the amplitude Ad and

the phase wd of the DFT (see Appendix S5 for details). The

thermal amplitude allowed us to measure the thermal buffer effect

in Kelvin between air and canopy layers and air and soil layers

(Fig. 1 and Appendix S5). The phase allowed us to measure the

thermal time lag expressed in minute in inside-canopy and soil

layers with respect to the air layer (Fig. 1 and Appendix S5).

Thermal time lag therefore quantifies the time delay in time series

to reach their maximum between air vs. canopy and air vs. soil

layers. This is an important climatic parameter to test whether

microclimate conditions below canopy (canopy and soil layers)

would track air conditions with some time lag depending on

habitat characteristics.

We also ran DFT analyses on a four-year monitoring (2008–

2012) of air temperatures (recorded at one meter high with half an

hour time step with the same shelter process described above) to

measure the seasonality. Analyses were performed for the three-

altitudinal belts of the study area (2800, 3200, 3600 m) by reading

the amplitude at the seasonal frequencies (91, 182 and 364 days,

see Appendix S6). On average the Fourier transform amplitudes at

91, 182 and 364 days were 0.14 (+/20.01), 0.44 (+/20.04), 0.97

(+/20.03)uK indicating that the seasonality was negligible in the

study area [24].

All Fourier analyses were performed in MATLAB R2011a

(Mathworks, Natick, USA). The effects of habitat, elevation, LAI

classes and the interaction ‘‘elevation 6 LAI classes’’ on daytime

and nigh-time DFT amplitudes and on DFT thermal time lag

were assessed using a two-way ANOVA with Bonferroni

corrections. When habitat was found significant, we ran post-hoc

Figure 2. Maps showing the differences between local air temperatures and the WorldClim interpolated minimum (A) and
maximum (B) (D Air L 2 Air WC). Blue colours indicate D Air L 2 Air WC ,0, i.e. area where local air temperatures are cooler than those gave by
WorldClim. Red colours indicate D Air L 2 Air WC .0, i.e. area where air local temperatures are warmer than the ones gave by the WorldClim. White
colours D Air L 2 Air WC = 0 indicate areas where air WorldClim temperatures equate air local temperatures (61uC). The extent and position of each
square is equal to the spatial resolution of the WorldClim database: 30-arc sec that is the equivalent of 0.86 km2 for the study area. Temperatures in
storages were obtained from [26].
doi:10.1371/journal.pone.0105541.g002
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Figure 3. Maps showing the differences between local air canopy and soil temperatures with the air local for minimum (A) and
maximum (B) (D Layer L 2 Air L). Colour code is given in Figure 2.
doi:10.1371/journal.pone.0105541.g003
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multiple comparisons using a Tukey HSD test to identify

differences among habitats. All statistical analyses were performed

in R version 3.0.0 (R Development Core Team 2012).

4.2. Thermal landscape analyses. To compare local

temperatures with global interpolated climate data employed in

species distribution models, we considered one of the most widely

used and readily available climate database, WorldClim [25]. The

WorldClim database is a set of global climate layers (interpolated

averages of monthly minimum, maximum and mean 1.5 m high

air temperatures from weather stations spread out worldwide) with

a spatial resolution of 30 arc seconds. Close to equator, this

resolution is equivalent to squares of 0.86 km. In each altitudinal

belt, we selected one WorldClim grid cell with homogenous slope

(between 5.4u and 7.9u), micro-topography and exposition (south-

west). Based on a digitized municipal cadastre (from the town

council of Salcedo, Cotopaxi province) and a 5-m resolution

digital orthophoto (Ecuadorian Military Geographical Institute,

www.igm.gob.ec/site/index.php), we built the digital landscape of

each grid cell in ArcGIS 10.01 (ESRI, Redlands, USA). In

addition to the six studied habitats, crop storage infrastructures

were also included into the digital maps as they significantly

modify air temperature patterns, offering optimal conditions for

crop pest development [26]. Outside air vs. inside air storage-

temperature relationships for different elevations were derived

from measurements made by [26] within the same area with

similar temperature data design (see Fig. 1 in Appendix A2 of their

paper). Roads and woodlots were also indicated on the maps even

if they were not included in the temperature comparison analysis,

as they do not constitute relevant habitats for crop pests.

In order to simulate landscape thermal heterogeneity, crop

habitats were attributed with one crop type (potato, broad bean,

corn, alfalfa or pasture) and one LAI classes (0, 0.01–0.5, .0.5)

based on a survey of 85 sites in the region, in which we quantified

landscape composition (% of each crop and LAI classes) in 100-m

radius sampling circles (see Appendix S7). For each habitat, we

assigned the corresponding air, air canopy and soil temperature

values at each elevation. Finally, since we were particularly

interested in minimal and maximal values, as they are the most

biologically relevant for ectothermic crop pests [4], we focused on

minimum and maximum temperatures obtained from the DFT

analyses and the WorldClim database.

Afterwards, we decomposed the variance of temperatures

between global interpolated grids and local temperatures mea-

sured in agricultural landscapes by mapping the differences in

minimum and maximum temperatures between the air local

temperatures (Air L) and the WorldClim interpolated temperatures

(Air WC) for the three studied grid cells. Then, to illustrate the part

of the variance due to microclimate effects, we mapped the

differences in minimum and maximum temperatures between

measured local air canopies, soil temperatures (Layer L) and the air

local temperatures (Air L) for the three studied grid cells.

4.3. Pest performance in thermal landscape. As a final

step of our analysis, we explored the implication of our thermal

landscape mapping for pest performance by comparing temper-

ature frequencies in our grid cells with the temperature-dependent

growth curve of a major crop pest species in the region:

Phthorimaea operculella (Lepidoptera: Gelechiidae). This pest is

considered one of the most important potato pests worldwide, but

also attacks a wide variety of other crops such as tomato (Solanum
lycopersicum L.), eggplant (Solanum melongena L.) or tobacco

(Nicotiana tabacum L.) (see [27] for a review). P. operculella feeds

on different part of the plant (leaves, stems, and tubers) and also

tubers in storage structures [26,28]. In agricultural landscapes, P.
operculella is abundant in virtually all types of habitats (even far

from its host plant) because 1) this pest is able to fly over large

distances (100–250 m) to infest suitable host plants [29] and 2) a

significant quantity of tubers are left in the field after harvest, and

are rapidly colonized by the moth before the following crop is

planted. It is therefore common to observe infested potato plants

in corn or broad bean fields. These left-over potatoes are well

know by farmers and agronomists as significant obstacle to the

control of these pests [28].

The temperature-dependent growth rate curve of P. operculella
larvae (in day-1) over a 0–40uC range was obtained using

published temperature-response data of laboratory experiments

performed in the Andean region (see [30] for details). PTM

development rate data were then modeled with the [31] equation

as modified by [32]:

D Tð Þ~

dT

298:16
exp

e

R

1

298:16
{

1

T

� �� �

1z exp
f

R

1

g
{

1

T

� �� �
z exp

h

R

1

i
{

1

T

� �� � ð1Þ

where T is temperature in Kelvin (uC+273.15), R = 1.987, and d,

e, f, g, h, and i estimated parameters. This model has been widely

used to describe the kinetics of insect development based on

several assumptions about the underlying developmental control

Figure 4. Mean thermal buffering from Fourier transforms at
the daily frequency for canopy (A, B) and soil temperatures (C,
D) as a function of elevation and leaf area index. (A, C) show the
daytime temperature excursion with respect to air, whereas (B, D) are
the equivalent results for night-time temperatures. The 95% interval of
confidence is given between brackets. Blue colours show colder
temperatures than air. Red colours show warmer temperatures than air.
doi:10.1371/journal.pone.0105541.g004
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enzymes. For instance, it has been used to describe poikilotherms’

temperature-dependent development [33].

We then compared the growth rate performance curve of P.
operculella for local temperature distribution (canopy and soil

layer temperatures) and for global interpolated ones (e.g., Fig. 3 in

[3]). Distributions of canopy and soil minimum, maximum and

mean temperatures were extracted from the three digitized

landscapes using the geostatistical analyst extension of ArcGIS.

Canopy and soil temperature frequencies were expressed as the

percent of total grid cell area. The growth performance model of

P. operculella given by Eqn. 1 was implemented with WorldClim

minimum and maximum temperatures and the local minimum,

maximum and mean temperature distribution. This allowed

estimating insect growth rate within the range of WorldClim

and measured field data.

Results

1. Local vs. global air temperature discrepancies in
thermal landscapes

Differences in average minimum and maximum temperatures

between local air temperatures and the global coarse grain

interpolated air temperatures from the WorldClim (D Air L – Air

WC) were mapped for the three studied grid cells (Fig. 2). While

minimum local air temperatures were cooler than those predicted

by WorldClim in 77.5610% of the studied areas (blue areas,

average min D Air L – Air WC = 22.9uK) maximum local air

temperatures were warmer than extrapolated temperatures in

82.1612% of the studied areas (red areas, average max D Air L –

Air WC = +5.6uK). This pattern was not influenced by elevation.

Notably, for all elevations, local mean air temperatures were quite

well predicted by the WorldClim (+/21uK) as in average

55.363.4% of the studied areas felt in the range of Air L –

Air WC #1uK (Appendix S8).

2. Temperature discrepancies due to microclimate in
agricultural landscapes

Differences in average minimum and maximum temperatures

between local canopy and soil temperatures and local air

temperatures (D Layer L2 Air L) were mapped for the three

studied grid cells (Fig. 3). Overall, canopy and soil areas were

always cooler than maximum air temperature and were always

warmer than air minimum temperatures resulting in a general

buffer effect of minimum and maximum air temperatures by

canopy and soil layers. The buffer effect on air temperatures was

significantly stronger for soil than for canopy layer (see Fig. 4,

Student’s t-test, t = 227.10 and t = 4.52, P,0.001 for night-time

and daytime, respectively). Interestingly, the buffer effect on air

temperatures by soil was higher during night-time than daytime

(Fig. 4D) while the opposite pattern was found in crop canopy

(Fig. 4A).

Elevation had a significant effect on air temperature buffering in

the canopy layer but not in the soil layer (Table 1). Contrastingly,

LAI had a highly significant thermal buffering effect in both soils

(night and daytime) and canopies (daytime, see Table 1). Buffer

effect on air temperatures by bare soil (e.g. without plant cover,

LAI = 0) ranged from 21.1uK to 22.3uK for daytime and from

3.4uK to 4.3uK for night-time. Crop type had no significant effect

on buffering patterns except for potato in which higher buffer

effects were recorded (Post-Hoc HSD test, P,0.05).

Overall, thermal time lag was much shorter in canopies

(7.562.6 min) than in soils (1.560.3 hours, Fig. 5). LAI classes

had a significant positive effect on thermal time lag for both

canopy and soil layers (Table 1). On average, thermal time lag

increased by 2 min. in canopies and 30 min. in soils between two

LAI classes. Similarly, elevation had a significant positive effect on

thermal time lag for both canopy and soil layers (Table 1) with an

average increase of 260.3 min. in canopies and of 60631 min. in

soil between two altitudinal belts (Fig. 5).

3. Thermal performance curve using local vs. interpolated
temperatures

To assess the implication of local vs. global interpolated

temperature discrepancies for crop pest performances, we plotted

the frequency distribution of the minimum (blue bars), maximum

(red bars) and mean local (stripped bars) temperatures and those

given by WorldClim (from minimum to maximum temperature,

shaded region in the background) with the temperature-dependent

growth rate curve of the potato moth P. operculella (Fig. 6). As a

general pattern, global interpolated temperature ranges predicted

lower growth rates of P. operculella than those predicted by local

temperatures at all elevations, in both inside-canopy and soil layers

(where the pest lives most of their time). While mean temperature

distribution generally fell within the WorldClim min-max range,

extreme temperatures (and especially maximum ones) largely

exceeded this range.

Figure 5. Thermal time lag from Fourier transforms at the daily
frequency for canopy (A) and soil temperatures (B) as a
function of elevation and leaf area index. The z-axis (log+1
transformed) is expressed in minutes (A) and in hours (B).
doi:10.1371/journal.pone.0105541.g005
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The WorldClim estimations predicted P. operculella growth

rates ranging between 0.007 and 0.045 day21 at 2800 m, and

between 0 and 0.018 day21 at 3600 m, the maximum rates being

slightly lower than those predicted by soil temperatures (0.068

day21 at 2800 m and 0.037 day21 at 3600 m). These differences

were exacerbated in canopy layers where estimated maximum

growth rates were 2.6–4.3 times higher than those predicted by

WorldClim (0.118 day21 at 2800 m and 0.079 day21 at 3600 m).

Discrepancies between WorldClim and local temperature-based

growth rate estimations were not significantly affected by elevation

(One-way ANOVA, F = 7.79, P = 0.219 and F = 1.67, P = 0.419
for canopies and soils, respectively).

Discussion

Accurate predictions of the responses of organisms to climate

change using SDMs require knowledge of microclimates at spatial

and temporal scales relevant for studied organisms [13,34,35]. To

our knowledge, our study is the first to quantify the thermal

heterogeneity among a set of agricultural habitats at fine spatial

and temporal scales and to compare those thermal microhabitats

to the most widely used global climatic dataset in SDMs. By

documenting the mosaic of thermal habitats found in tropical

agricultural landscapes, our study confirms previous evidence that

microclimates strongly differ from nearby macroclimates due to

the variability of air motion and solar radiation patterns created by

complex topographies with heterogeneous elevation, slope angle,

exposure or roughness [1,7,18,36]. Our study therefore supports

the view that results from the long tradition of agrometeorological

studies on microclimates (e.g. [6,17,22]) have to be revived in the

new context of microhabitat modelling for predicting the response

of organisms to climate change.

1. LAI-based and elevation-based climate heterogeneity
In contrast to many previous studies (see [7] for a review), our

objective was not to examine the well-documented effect of

topography on local temperatures but rather to examine the less-

known effects of habitat types and vegetation land cover on

thermal landscape features. We found significant thermal time lag

and buffer effects on air temperatures by plant and soil layers

below crop canopies during night-time and daytime. The top of

canopies reflects and absorbs part of the solar radiation during the

day, allowing less energy to reach the layers (plants and soils)

below canopies. During the night, infrared heat released from both

the ground and plants is partly held back by the canopy above [5].

As a consequence plants and soils limit night-time cooling and

daytime warming [6], leading to a significant buffer effect of

minimum and maximum temperatures [1,4,17]. That is also why

we found a buffer effect on air temperatures by soil higher during

Figure 6. Superimposed plot of the temperature-dependent growth rate curve of the potato moth Phthorimaea operculella
(dashed line) and the frequency distribution (% of area) of average minimum (blue), maximum (red) and mean (striped)
temperatures for canopy and soil layers at the three studied elevations. Grey (shaded) bands in the background represent the WorldClim
minimum and maximum temperature range.
doi:10.1371/journal.pone.0105541.g006
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night-time than daytime and the opposite pattern for crop

canopies.

Our results indicate a strong effect of elevation on thermal

buffering and thermal time lag by canopy and soil layers. This

could result from the combination of a negative relationship

between elevation and air temperature and a positive relationship

between elevation and solar radiation exposure, part of which is

absorbed by plants and soils [6]. As a result, the difference between

air temperature and canopy and soil temperature increased with

elevation. Interestingly, the modifications of local temperatures by

habitats and LAI were of the same magnitude (from 22.70 to

4.82uC in average) than that generated by topography-related

factors [7,36], supporting the need to better consider habitat

effects on microclimates.

2. Fine scale variations in temperature vs. climatic units
Our findings show that the complex agricultural mosaic

resulting from habitat types and LAI classes at the landscape

scale was a major modifier of the thermal patterns in the studied

tropical highlands. More importantly, our findings revealed that,

at best, 55% of landscape habitats had real mean air temperatures

that were well estimated by WorldClim predictions while in

average less than 20% of these areas had minimum and maximum

air temperatures well estimated. Additional thermal discrepancies

between large and fine-scale temperatures resulted from hetero-

geneity in crop types and phenologies. This strongly supports the

view that the common use of the WorldClim database arrayed into

1-km2 grids may not adequately capture the reality of the climatic

environment experienced by living organisms, in particular tiny

ectothermic species [2,3,13,18]. It is important to note that to

obtain the highest level of thermal heterogeneity we chose a

complex mountainous agricultural study area that provided

boundary conditions for climate modelling. Indeed, these moun-

tainous areas provide strong climatic gradients and extreme

habitat fragmentation which combined with un-seasonal agrosys-

tem make up a mosaic of thermal patches that expanded the

difficulties to faithfully assess climatic parameters for modelling

[25]. In view of the urgent need of fine scale climate data with

large extent [2,8,35] more research is necessary to develop

accurate up- or down-scaling methods, in mountainous locations

where thermal heterogeneity is large, and may be needed to

properly describe the ecologically significant microclimates [7,37].

3. Microclimates and species distribution models
From tiny insects to mega-herbivores, it is well recognized that

species ecology is strongly influenced by micro-climatic features of

the landscape [2,10,11,12,13] yet quantitative information on how

thermal landscape heterogeneity may affect species performance is

scarce. Short-scale differences in temperatures may provide

opportunities for individual organisms, even with limited dispersal

capabilities, to escape unfavourable microclimates or to maximize

physiological performances by selecting preferred microclimates

[38,39]. Our analysis showed that predictions on P. operculella
growth rates strongly differed between Wordclim-based and

locally-measured temperatures, suggesting that global species

distribution models using global coarse-scale climatic datasets

without further microclimate modelling could be strongly limited

to accurately predict species occurrence and performance, in

particular that of ectotherms living in habitats such as mountain

slopes. Such a spatial heterogeneity in thermal patches, where

climatic conditions are strongly modified, provides a mosaic of

favourable, sub-optimal or lethal thermal habitats that directly

influences the performance of natural populations of ectotherms.

Coarse-extent modeling of microclimate is currently one of the

major obstacles to predicting how organism will react to their

experienced environments and forecast their distribution under

climate change [8]. To date, two main types of models have been

shown to provide relatively accurate, continent-wide calculations

of microclimate: statistical model and mechanistic model [13]. The

first one is statistical as the variables are not deterministically but

stochastically related. These models perform statistical correlation

of species occurrences with climatic data and have proven to be

powerful interpolative tools for defining and projecting climatic

envelopes [40,41]. A disadvantage of these statistical models is that

they can only be applied to the conditions under which they are

fitted. On the other hand, mechanistic models of the climatic

responses of organisms [13,34] use fundamental knowledge of the

interactions between process variables to define the model

structure. Therefore they do not require much data for model

development and validation. One of them is the Microclim model

recently developed by [35,42] for all terrestrial landmasses 2

except Antarctica2 which quantify key microclimatic parameters

at macro-scales, with a relatively fine spatial (15 km2) and

temporal resolution (hours). The microclimatic parameters such

as wind velocity, humidity, and solar radiation allow building

energy and mass budgets of organisms, and therefore serve as key

inputs for biophysical models of species distributions.

It is important to highlight that a better spatiotemporal

resolution in temperature patterns should go in pair with the

development of more accurate temperature-based population

dynamics models to integrate it [2,13,34,43]. Existing predictions

of models based on insect response measured in constant

temperatures may yield different and less realistic results than

those from predictions of models that include the effect of real

temperature fluctuation on insect biology [33]. For example, to

date, we still do not know the impact of a few hours of warm

temperature for the performance of ectotherm species at longer

time scales [33]. In this context, fine-scale spatiotemporal

temperature mapping has revealed a key step for any studies

aiming at understanding, predicting and managing the responses

of species distributions to climate change.
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