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Abstract We review resilience to natural and anthropogenic disturbance of palm
populations and communities in tropical America. Response of palms to disturbance
depends on their morphological traits, their reproductive strategies and the impacts
of these traits and strategies on phenology and gene flow. Human impact induces
changes in genetic structure, increasing endogamy and genetic drift in fragmented
populations. Forest fragmentation and harvest of palm organs are well documented
whereas effects of intermediate disturbance like selective logging, hunting or fire
remain poorly known. We recommend emphasis on long-term experiments and on
the use of mechanistic approaches in future research to facilitate integration of
available data into a theoretical ecological framework.
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Introduction

In the context of the global, ever-increasing human impact on the Earth’s biomes, it
is important to understand mechanisms that regulate ecosystems, control their
capacity to absorb disturbances and maintain their biodiversity. One of the most
striking manifestations of global human impact is deforestation, especially in humid
tropical countries (Hansen et al., 2010), where the richest—and least studied—forest
ecosystems ocurr (Pitman, 2010). Globally, tropical forest cover is decreasing (Gibbs
et al., 2010; Hansen et al., 2010) and most of the remaining forested areas are in a
disturbed state (Mayaux et al., 2005).

Alteration and decrease in tropical forest cover is not only a concern for
biodiversity conservation and biosphere stability, but also for the future and well-
being of human populations, through the crucial ecosystem services that tropical
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forests provide. Ecosystem services include conservation of soils, carbon uptake,
regulation of water cycles and local climate, control of populations of disease
vectors. Subsistence and trade services are provided by harvested products for food,
construction, tools, fabrics, combustibles, medicine, etc. (Ehrlich & Ehrlich, 1992;
Carpenter et al., 2006a,b).

The sustainability of ecosystem services depends on ecosystem resilience, i.e.
“the capacity of a system to absorb disturbance and reorganize while undergoing
change so as to still retain essentially the same function, structure, identity, and
feedbacks” (Walker et al., 2004). Resilience is generally discussed at the ecosystem
level and related to ecosystem services in a socio-economic context (e.g. Meijaard et
al., 2010). Since tropical forest ecosystems are particularly complex, a relevant
approach to characterize their resilience abilities is to assess the functioning of their
key components individually (Schaberg et al., 2008). Forest ecosystem resilience is
maintained provided that secondary succession dynamic is active, so increasing
attention is being paid to this process in tropical forests (Lowe et al., 2005; Sezen et
al. 2005; Babweteera & Brown, 2009; Norden et al., 2009; Letcher, 2010).

Within its resilience limit, an ecosystem is able to recover and return to its initial
equilibrium after release of the disturbance driver (Holling, 1973). However, as soon
as disturbance exceeds the resilience threshold, a regime shift occurs, that can alter
seriously the benefits provided by the initial system (Folke et al., 2004; Lambin,
2005; Brock & Carpenter, 2006).

Palms in the tropical America are ideal candidates to examine resilience at the
species level. Tropical American palms are diverse, with 459 species in 50
genera recorded in South America (Pintaud et al., 2008b), and at least 150 species
in 25 genera in Central America (Henderson et al., 1995). Tropical American palms
are also commonly gregarious and locally abundant (Terborgh & Andresen, 1998;
Arroyo-Rodriguez et al., 2007), forming up to 72% of the canopy cover locally
(Kahn & de Granville, 1992). This is particularly noteworthy in tropical forests
where the high tree diversity generally results in a low density of each treelike
species (Lieberman & Lieberman, 2007). The keystone properties of palm
populations make them essential components of tropical forests, influencing
deeply the structure and the functioning of these ecosystems. Their importance can
be described in terms of biomass, vegetative cover, effect on tree recruitment and
other competitive interactions with plants (Vandermeer, 1977; Wang & Augspurger,
2004; Peters et al., 2004; Aguiar & Tabarelli, 2010), role in nutrient turnover,
interactions with phytophages, dispersers and pollinators (e.g. Wright & Duber,
2001; Galetti et al., 2006; Stone, 2007). From a socio-economic standpoint,
tropical American palms are considered a major resource (Henderson et al., 1995)
as fruits, leaves, stems, seeds, sap and other parts are exploited, destructively or
not, for numerous purposes (Macía, 2004; Balslev et al. 2008; Galeano & Bernal,
2010). Human-induced disturbances that may cause the loss of such species should
have dramatic consequences for the ecological functioning of tropical American
ecosystems (Arroyo-Rodriguez et al., 2007) and for the crucial services these
species provide.

The disturbances affecting palm resilience in tropical America are primarily
related to deforestation. This may be a direct effect, through clearcutting or selective
logging (Svenning, 1998), which generate microclimatic stress by changing local
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temperature and relative humidity (Laurance et al., 2001). These changes may
exceed the physiological limits of palms and lead to the extinction of palm
populations in deforested areas. Deforestation also has indirect effects on palm
populations, through habitat fragmentation, including edge effects, especially with a
higher mortality of large-seeded, slow growing, old-growth trees (Scariot, 1999;
D’Angelo et al., 2004; Laurance et al., 2004), and the alteration of seed dispersal
through depletion of populations of seed dispersers (Wright & Duber, 2001; Chapman
et al., 2010; Becker et al., 2008). Other disturbances include harvest of non-timber
forest products (NTFPs) of palms, which is particularly widespread in the tropical
America (e.g. Galeano & Bernal, 2010), herbivory by domesticated animals, game
hunting, fire and natural disturbances (Fearnside, 2002). Disentangling the effects of
each of these disturbances on the resilience of palm populations at the ecological and
genetic levels would provide clues for the long-term conservation and sustainable use
of tropical American forests.

Here we review the literature concerning resilience of palm populations and palm
communities in tropical America. We ask specifically the following questions:
Which are the factors underlying palm responses to disturbance? How does
resilience vary as a response to different kinds of disturbance? Is the importance
of palms in various geographic regions of tropical America well represented in
existing studies ? How relevant are past and current methodological approaches to
assess palm resilience following disturbance? Based on the answers to these
questions we make recommendations for future ecological research on palms that
will improve both the theoretical basis for our understanding of resilience and
provide practical tools for biodiversity conservation.

Methods

We used quantitative and qualitative approaches to review the effects of disturbance
on palm resilience in tropical America.

Studies relevant to ecological resilience of palm populations and communities
facing disturbances were sufficiently numerous and similarly structured to
perform a quantitative meta-analysis. We assessed papers referenced in the Web
of Science (1975–present) containing one or more of the following keywords:
palm, disturbance, (central or south) America, fragmentation, deforestation,
hunting, fire, harvest, extraction, and/or defoliation. We excluded papers that (i)
treat species’ response to disturbance at community level with only brief mention
of palm responses, (ii) that do not compare clearly defined and different levels of
disturbance (e.g. Wang, 2008; Portela et al., 2010), or (iii) that deal with the effects
of disturbances on palm resilience only in the discussion section (e.g. Rodríguez-
Buriticá et al., 2005). A total of 45 papers (published in 1987–2010) meeting these
critera were retained. These studies address the effects of various types of
anthropogenic and natural disturbances on the structure and dynamic of palm
populations and communities in tropical America. They include detailed
information about 34 palm species, and in addition a number of species are briefly
mentioned in community-level studies. The following information was extracted
from each paper: type of disturbance (harvest, fragmentation, clearcutting, selective
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logging, herbivory, hunting, fire and natural disturbance); type of study (experimental or
observational); application of matrix models (yes, no); duration of the study (“snapshot”
intsantaneous study, 1–2 years, 2–5 years, >5 years); ecological level of organization
(population or community); microenvironmental abiotic data including microclimate,
soil composition and moisture etc. (measured, not measured). A simple, semi-
quantitative resilience index (high, medium, low) was estimated for each species in
each study within the sample. High resilience corresponds to a positive or neutral
response of palms to disturbance (e.g. Sabal spp.: higher level of leaf production under
higher harvest intensities; Martínez-Ballesté et al., 2008). Medium resilience
corresponds to a slightly negative or antagonistic response of palms to disturbance
(e.g. Ceroxylon echinulatum: positive effect of selective logging but negative effect of
clearcutting; Anthelme et al., 2011). Low resilience was identified as a clearly negative
response to any disturbance, directly (e.g. Sabal yapa: lower fecundity and lower
seedling survival after clearcutting; Pulido et al., 2007) or indirectly (e.g. Euterpe
edulis: alteration of the size of disperser’s populations due to habitat fragmentation;
Fadini et al., 2009), that will affect indices of palm fitness (biomass, reproduction and/
or survival). When two disturbances were studied for the same species (e.g. response
of Ceroxylon echinulatum to selective logging and clearcutting; Anthelme et al., 2011)
we provided two separate resilience indices. This information is summarized in
Table 1. Data on life form, habitat and reproductive strategy were extracted from the
publications taken into account in this study and from Henderson et al. (1995) and
Galeano & Bernal (2010). Presence or absence of harvesting pressure on the
considered species within the context of the studies was additionally reported, as well
as an average resilience score for each species (including various types of disturbances
and various studies when available). These data appear in Table 2.

Secondly, we provide a qualitative analysis of the factors underlying palm
resilience, by compiling information on broad-scale/long-term factors influencing
palm population dynamics, and on life history traits of palms from the continental
tropical America (Takhtajan, 1986) including Mexico, Central and South America, as
well as more general information on tropical tree functioning and humid forest
ecosystems relevant to the topic.

Quantitative Assessment of Publications on Palm Resilience

With 45 peer-reviewed publications discussing the effects of disturbances on palm
populations and communities in tropical America, there is sufficient empirical
information available to assess quantitatively the locations, methods and descriptors
used, as well as the main results and interpretations found on palm resilience in
disturbed areas. This approach will permit (i) to characterize more accurately the
current state of knowledge on palm resilience, and (ii) to propose relevant focuses
for future research (Fig. 4).

Geographic Distribution of Studies

Studies of resilience of palm populations and communities are unevenly distributed
across the forest ecosystems of tropical America (Fig. 1). Amazonia and Central
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America, the richest regions for palms (Henderson et al., 1995, Pintaud et al.,
2008b), are logically the most studied, but the Atlantic forest, with 35 palm species
recorded, has also been the subject of a relatively high number of studies. The
Pacific coast, while harbouring as many as 105 species, is represented in our

Table 2 Data on Species Studied in the Set of Articles Used in the Quantitative Analysis

Species References (from
Table 1)

Understorey /
canopy Tree

Aerial
Stem

Clonal Harvest Resilience

Aiphanes erinacea 43* U + + − low

Aphandra natalia 33 U + − + medium

Astrocaryum aculeatissimum 25 U + + − low

Astrocaryum mexicanum 1, 5, 29 U + − − low

Attalea butyracea 44 CT + − + low

Attalea geraensis 11 U − − − medium

Attalea humilis 41 U − − − medium

Attalea speciosa 7 CT + − + medium

Bactris gassipaes 15 CT + + + low

Ceroxylon echinulatum 4 CT + − + medium

Chamaedorea elegans 28 U − − + high

Chamaedorea linearis 43* U + − − high

Chamaedorea pinnatrifrons 43* U + − − high

Chamaedorea radicalis 16, 17, 18 U − − + medium

Chamaedorea tepejilote 33 U + − − high

Desmoncus orthacanthos 19, 40 U − + + high

Euterpe edulis 20, 21*, 24 CT + − + low

Euterpe oleracea 30 CT + + + medium

Geonoma congesta 14 U + + + high

Geonoma deversa 23, 45 U + + + medium

Geonoma macrostachys 41 U − − + medium

Geonoma schottiana 37 U + − + medium

Geonoma undata 43* U + − + low

Iriartea deltoidea 2 CT + − + medium

Mauritia flexuosa 26, 38 CT + − + medium

Oenocarpus bacaba 12, 39* CT + − + medium

Oenocarpus bataua 34* CT + − − medium

Phytelephas seemannii 9 U − − + medium

Prestoea acuminata 43* U + + + medium

Sabal mexicana 27* CT + − + high

Sabal yapa 27,35, 36 CT + − + high

Socratea exorrhiza 34* CT + − − high

Syagrus romanzoffıana 21*, 22 CT + − − low

Thrinax radiata 13 CT + − + medium

*For community-level studies, only the species otherwise studied at the population level are mentionned in
this table
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sample by only two studies. The Andes and the Guyanamountains (135 species) and the
South Cone (79 species), are clearly understudied with respect to palm response to
disturbance (two and one studies, respectively). These dissimilarities among ecosystems
result from the focus of the few research teams involved in the field. This is particularly
evident for papers published on the Atlantic forest, most of which have been written by
the same team. Likewise, the numerous works conducted in Veracruz and Yucatán were
impulsed by the strong Mexican ecology school.

Methodological Approaches

Descriptors of Resilience. The ecological descriptors used to estimate the resilience
of palm populations and communities can be classified in four groups.

Fig. 1 Number of palm species/number of articles addressing palm resilience by phytogeographical units
in the Neotropics
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Fig. 3 Distribution of articles addressing palm resilience in the Neotropics by (i) type of disturbance
(Ha: harvest; Fr: fragmentation; D: complete deforestation; SL: selective logging; He: herbivory;
Hu: hunting; Fi: fire; ND: natural disturbance), and by (ii) resilience level (white bars: high; grey bars:
medium; black bars: low). Above each bar: period during which papers were published

Fig. 2 Number of papers studying palm resilience in the Neotropics by (i) timescale (x axis), and (ii) use
of transition matrices (grey bars)
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(i) Productivity, with indices related to biomass and/or growth (e.g. Sampaio et al.,
2008), percentage of plant damage (e.g. Chazdon, 1991), and density of individuals
(e.g. Svenning, 1998); (ii) reproduction, with indices related to reproductive output
(e.g. Bonjorne de Almeida & Galetti, 2007), seed density and/or dispersal (e.g. Berry
et al., 2008), and sex ratio among adults (e.g. Barot et al., 2005); (iii) population
dynamics, with indices of survival (e.g. Moegenburg & Levey, 2003) and
demographic structure (e.g. Freckelton et al., 2003); (iv) species richness, which
applies for studies at the community-level.

Selecting one or several resilience descriptors depends on the objective of the
study. Studies aiming at increasing economical gain through harvest have
considered descriptors of productivity (e.g. number of shoots; Pulido &
Caballero, 2006; Pulido et al., 2007), while studies with a focus on population
conservation have choosen descriptors of population dynamics (e.g. transition
matrix), reproductive output (e.g. seed dispersal; Bonjorne de Almeida & Galetti,
2007), or species presence/absence at the community level (e.g. Svenning, 1998;
Baez & Balslev, 2007).

The outcome of these descriptors is variable and a common trend is that those
related to growth more likely demonstrate resilience than those related to
reproduction (Chazdon, 1991).

Genetic descriptors of resilience include spatial or temporal comparison of
genetic diversity (among sites with different degree of disturbance and recovery,
or among successive generations) and measures of gene flow (Gaiotto et al.,
2003; Sezen et al., 2007).

IDENTIFYING PALM 
RESILIENCE

Type of disturbance
•Fragmentation, negative effects

•Harvest, complex effects
•Others, uncertain

Methodological 
approach

•Transition matrices
•Removal experiments

Biogeographic region
•Unbalanced sample

Ecological applications
•Precise  resilience thresholds
•Need for longer study periods

Conceptual ecological 
framework
•Uncertain

•Needs a mechanistic approach

MODEL OF ECOLOGICAL RESILIENCE
•Intermediate disturbance hypothesis

•Plant-plant interactions

Fig. 4 Current knowledge on palm resilience in the Neotropics: what do we know? What do we need to
develop in future researches?
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Population or Community Level. Ecological studies also generally focus on a
particular species with keystone properties on the ecosystem (e.g. Euterpe edulis,
Fadini et al., 2009; Ceroxylon echinulatum, Anthelme et al., 2011; Mauritia flexuosa,
Holm et al., 2008). Among the studies reviewed here, only six study palm resilience
at the community level, i.e. comparing the effects of disturbance on at least two palm
species (Table 1). Although palms, as a distinctive taxonomic group, may behave
relatively similarly when compared to other taxa and can thus be treated as a single
entity (Norden et al., 2009), resilience levels can be very different among palm
species under similar disturbance regime, such as selective logging (Svenning, 1998)
or habitat fragmentation (Fleury & Galetti, 2004, 2006; Baez & Balslev, 2007),
especially when comparing different spatial scales (Scariot, 1999). Therefore, direct
comparisons of palm resilience through studies at the community level probably
deserve closer attention in future research for a better understanding of the variability
of palm responses to disturbances.

Genetic studies of palm resilience are all at the population level, and are limited to
a few case studies (Euterpe edulis, Galetti et al., 2006; Iriartea deltoidea, Sezen et
al., 2007). Some studies compare different species but not in a context of
disturbance, so that interspecific differences in resilience abilities are only
hypothesized (Luna et al., 2005, 2007).

Time Scale. Snapshot studies, short-term studies and long-term studies using
permanent plots each have their own advantages and applications in ecology
(see Stohlgren, 2007 for a review). A general consensus is that long-term studies
are underrepresented in ecology (e.g. Brooker et al., 2008), especially because
they require the development of intensive protocols. Nevertheless, papers
exploring palm responses to disturbance on a time-range exceeding two years
are relatively common in our sample (29% of the total) and surprisingly more
frequent than snapshot studies (18%). This may be explained (i) by the high
portion of papers studying the effects of harvest, that frequently develop in situ
experiments comparing a control with various treatments (e.g. leaf removal,
Anten et al., 2003) over several months or years, and (ii) by the frequent use of
transition matrices (50% of the papers reporting a study of at least two years;
Fig. 2). Data collection for constructing transition matrices requires a relatively
long period to provide consistent predictions on the demographic structure and
dynamics of palm populations. These data provide precise results for manage-
ment purposes (e.g. Bernal, 1998; Holm et al., 2008). However, the fact that only
a few studies consider periods over five years (9% of the sample, Fig. 2; but see
Brum et al., 2008) might question the consistency of the results for slow growing
palms. Data at longer temporal scales are required in future research (Endress et
al., 2006).

Another specific feature of studies on palm resilience is the relatively high
proportion of experimental studies, which also necessitate observations over several
years (46% of the sample, Table 1). As for transition matrices, this approach, largely
applied in the study of harvest effects (experimental removal of leaves, fruits or
shoots), generates very precise results for management purpose (e.g. Mendoza et al.,
1987; Calvo-Irabién et al., 2009).
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Data on Microenvironment and on Physiological Responses to Disturbance. The
distribution of tropical American palms has been shown to be highly sensitive to
variations of the microenvironment (Svenning, 2001; Andersen et al., 2010).

Although transition matrices and experimentations provide a strong basis for the
evaluation of individual and population resilience, the rarity of information on the
microenvironment and on the morphological or physiological response of target
species to disturbances (but see Anten et al., 2003; McPherson & Williams, 1998;
Siebert, 2000; Zuidema et al., 2007), limits the interpretation of results in terms of
mechanisms, thus preventing the shift from pattern to process analyses.

Disturbance Drivers

Harvest and, to a lesser extent, habitat fragmentation, have been the most studied
disturbances affecting palms in tropical America (Fig. 3). Consequences of
clearcutting (regeneration in pasture, secondary succession) and of selective logging
on palms have been much less studied. The effects of hunting, fire, and natural
disturbances on palm resilience are clearly understudied although being widespread
causes of population alteration.

Deforestation. Both fragmentation and clearcutting were shown to deeply alter the
structure and the dynamics of palm populations (Fig. 3), either directly or indirectly.
Fragmentation has in most cases a negative impact on the demography of palms in
remnant habitats (Scariot, 1999; Benitez-Malvido & Martinez-Ramos, 2003).
Mechanisms underlying these negative effects of habitat fragmentation include
higher competition with secondary forest species (Arroyo-Rodriguez et al., 2007),
especially at the boundaries between forests and deforested areas. This negative edge
effect at the community level (Baez & Balslev, 2007), may also impact palm
dynamics through higher light intensity, altered distribution of dispersers and
pollinators and mechanical disturbance such as increased numbers of tree-falls.
However, a population study identified more complex effects, with a positive edge
effect of habitat fragmentation on the density of saplings and adults in Oenocarpus
bacaba (Brum et al., 2008). Therefore, studies at the community level have
demonstrated an overall negative edge effect on palm fitness, but some species do
benefit from this type of disturbance.

Fragmentation has been shown to indirectly affect palm demography negatively,
(i) by reducing the density/diversity of pollinators available to Astrocaryum
mexicanum (Aguirre & Dirzo, 2008), and (ii) more commonly by reducing the
density/diversity of seed dispersers. Due to limitations in seed dispersal consecutive
to fragmentation, several tropical American palms are considered to be in danger of
extinction (e.g. Galetti et al., 2006), especially because of the occurrence of genetic
inbreeding (Clement et al., 2009). However, palms producing fruits dispersed by a
wide range of vertebrates may be less sensitive to such effects. Bird and bat dispersal
may remain effective in a fragmented forest landscape because these animals can fly
over pasture and maintain genetic connectivity between forest fragments through
seed dispersal (Sezen et al., 2007). The size effect of forest fragments was analyzed
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in several tropical American ecosystems and revealed complex effects of micro-
habitats that deserve further research (Scariot, 1999; Fleury & Galetti, 2004, 2006;
Aguirre & Dirzo, 2008; Wang, 2008).

The direct effects of clearcutting have been less studied than the effects of
fragmentation (Fig. 3). Attalea speciosa, which establishes easily and sometimes
becomes invasive in clearcut areas and pastures, starts flowering and fruiting at
lower height and has irregular timing between males and females when it grows
outside the forest (Barot et al., 2005). In Ecuador adults of Ceroxylon echinulatum
and Attalea colenda resist the abiotic stress caused by deforestation, but seedlings
cannot survive and populations in pastures do not regenerate (Borchsenius et al.,
1998; Anthelme et al., 2011).

Harvesting of Palms and Palm Parts. The high number of studies published since
1987 that investigate effects of harvest on palm populations (Mendoza et al., 1987)
reflects the high economic value of the palm family and its importance as provider of
NTFPs. Target material is primarily leaves (e.g. Pedersen, 1996; Svenning & Macía,
2002; Valverde et al., 2006; Martínez-Ramos et al., 2009), but also palm heart
(Freckelton et al., 2003), seeds (Bernal, 1998; Holm et al., 2008), fruits
(Moegenburg & Levey, 2003; Holm et al., 2008), shoots (Siebert, 2000; Escalante
et al., 2004), stems (Anderson & Putz, 2002), or even sap (Wright & Duber, 2001;
Galetti et al., 2006).

The sustainability of various harvesting modes is the purpose of most papers,
following Holm’s et al. statement (2008) that the challenge for NTFPs is finding the
harvest level that will supply enough income to forest dwellers while at the same
time maintaining population viability of harvested species. Overall, available data
tend to detect a complex effect of harvest intensity on palm growth, varying from
positive (Sabal spp., Martínez-Ballesté et al., 2008; Desmoncus orthacanthos,
Siebert, 2000) to neutral (Chamaedorea elegans, Martínez-Ramos et al., 2009) and
negative (Geonoma deversa, Flores & Ashton, 2000), while effects on reproductive
output are found to be systematically negative (Geonoma deversa, Flores & Ashton,
2000; Chamaedorea radicalis, Endress et al., 2004a,b; Chamaedorea elegans,
Martínez-Ramos et al., 2009). Effects vary according to the percentage of individuals
harvested, with some precise thresholds proposed in various studies (86% of seeds of
Phytelephas seemannii, Bernal, 1998; 40% of shoots of Desmoncus orthacanthos,
Escalante et al., 2004; 22.5% of Mauritia flexuosa females harvested in fruits every
20 years, Holm et al., 2008; 33% of leaves of Astrocaryum mexicanum harvested,
Mendoza et al., 1987; 30% of leaves of Thrinax radiata harvested, Calvo-Irabién et
al., 2009). Harvest effects also vary according to the life-stage harvested: harvesting
juveniles of Astrocaryum mexicanum may lead to population decline more rapidly
than harvesting adults (Mendoza et al., 1987). Harvesting reproductive adults was
shown to enhance sustainability in Euterpe edulis (Freckelton et al., 2003), while
conserving reproductively active individuals of Chamadorea radicalis favors
sustainable harvest (Endress et al., 2006). Selecting mature leaves lead to a better
sustainability in some species (Sabal spp., Martínez-Ballesté et al., 2008), and can
enhance leaf production up to 30% in other species (Astrocaryum mexicanum,
Mendoza et al., 1987), evidencing the crucial role of life history traits for resilience.
Leaf production is an important concern when considering that some palms such as
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Ceroxylon echinulatum (Anthelme et al., 2011), Prestoea acuminata (Bonilla & Feil,
1995) or Euterpe edulis (Freckelton et al., 2003) are specifically harvested for their
young leaves. Some species are particularly resilient to harvest, regardless of life-
stage or leaf maturity, such as Desmoncus orthocanthos (Siebert, 2000) and Sabal
spp. (Martínez-Ballesté et al., 2008). Finally, indirect effects of harvest include
negative effects on seed dispersers through fruit removal (Euterpe oleracea,
Moegenburg & Levey, 2003).

Harvest is certainly the best-known type of disturbance when considering its
effects on the resilience of tropical American palm populations. The variety of
responses described indicates highly species-specific behaviors. Compared with
fragmentation, clearcutting, or browsing in Chamaedorea radicalis (Endress et al.,
2004a), harvest can more easily be managed as to ensure population viability.

Harvest has been shown to be directly related to the level of poverty of local
inhabitants (Chamaedorea sp., Lopez-Feldman & Taylor, 2009), as well as positively
correlated with the remoteness of markets where palm products can be sold (Byg et
al., 2007). Therefore, limiting non-sustainable harvesting could also be achieved by
acting on socio-economic factors.

Other Disturbances. Selective logging is one of the most common and
widespread causes of disturbance in tropical America but it has been little
studied with respect to its impact on palm populations (Fig. 3). Two studies were
carried out in tropical mountain cloud forests in northwestern Ecuador, as a
response to concerns about high rates of deforestation in this region (Svenning,
1998; Anthelme et al., 2011). Both studies suggest that resilience to selective
logging (partial clearing) is relatively high. However, the outcome of resilience
may be strongly species-specific, as indicated by studies at the community level
(Svenning, 1998). Selective logging may often be associated with habitat
fragmentation, thus displaying antagonistic effects on palm resilience (positive
effect due to selective logging but negative effect by fragmentation; Anthelme et
al., 2011). For these reasons, more data are needed in this field.

Herbivory tends to negatively affect the fitness of tropical trees (D’Angelo et al.,
2004). However, the effects of domestic herbivores are often entangled with the
effects of clearcutting (e.g. Barot et al., 2005). The few studies exploring the
separated effects of domestic herbivores on palm dynamics found a negative impact
of browsing on the survival of seedlings, juveniles and young adults (Endress et al.,
2004a). Considering that deforestation in tropical America is often followed by
pasture development (e.g. Wang, 2008), this factor deserves more attention in future
research on palm resilience.

The effects of hunting and fire are part of the altered dynamics of tropical trees,
especially when associated with the effects of habitat fragmentation caused by large-
scale deforestation (Wright & Duber, 2001; Wang, 2008). Hunting is a direct and
severe cause of defaunation in tropical forest (Siren et al., 2004; Zapata et al., 2009).
Although hunting has been shown to affect negatively the resilience of palm
populations (Fig. 3), studies on this aspect remain scarce.

The effects of fire have been even less addressed in tropical America. A study on
Attalea humilis revealed an intermediate resilience level for this species which is
adapted to fire (Souza & Martins, 2004). However, a study in Australia on
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Ptychosperma macarthurii showed various negative indirect effects of fire on palm
resilience, especially when associated with other disturbances (Liddle et al., 2006).
Another natural disturbance, flooding, was shown to have a medium impact on palm
resilience, its differential effect among species possibly explaining the distribution of
sympatric species (Pacheco, 2001).

A single study addresses the effects of natural or global disturbances on the
fitness of palm populations, through the combined effects of ENSO (El Niño
Southern Oscillation) and experimental defoliation on the fitness of Chamadorea
elegans (Martínez-Ramos et al., 2009). These authors suggest that strong episodic
disturbances not related with deforestation or harvest may strongly alter palm
demographic structure in tropical forests. More generally, global change combined
with habitat fragmentation is hypothesized to affect the density and basal area of
tropical tree species, and the alteration of tree communities in undisturbed
Amazonian forests might be due to rising atmospheric CO2 concentrations
(Laurance et al., 2004). Therefore, there is a basic need for long-term experiments
designed to disentangle the direct anthropogenic effects, effects of global change,
and periodic global disturbances such as ENSO on the fitness of tropical American
palms.

Broad Scale and Long-Term Factors Influencing Palm Population Dynamics

The effects of broad-scale and long-term factors on the dynamics of tropical
American palm populations have been poorly explored, although this information is
crucial to predict future adaptation and evolution of palm populations in a changing
environment.

The distribution range of species has consequences for their populational diversity
and vulnerability. Tropical American palm species in general present great variation
in range sizes. Species such as Geonoma deversa, Oenocarpus bataua or Attalea
maripa are widely distributed, whereas others, for example Geonoma tenuissima or
Cryosophila macrocarpa are restricted to very small areas (Henderson et al., 1995;
Borchsenius et al., 1998; Bjorholm et al., 2005; Galeano & Bernal, 2010). Vicariance
events of geological nature, episodic long distance dispersal, past climate changes
and contemporary climate and soils determine the spatial distribution patterns of
palm species at regional and continental scales (Clark et al., 1995; Vormisto et al.,
2004; Bjorholm et al., 2005, 2006; Montúfar & Pintaud, 2006).

Dispersal across the Andes has been studied in two species in Ecuador. Trénel et
al. (2008), found a strong geographic structure in the genetic diversity of Ceroxylon
echinulatum, with four highly differentiated subpopulations, two on either side of the
Andes, with evidence of trans-Andean dispersal of Quaternary age (>0.6 MY).
Montúfar (2007) detected little genetic divergence between populations of
Oenocarpus bataua on either side of the Andes, suggesting a persistence of cross-
Andean gene flow until at least late Pleistocene. In the western Amazon basin,
Oenocarpus bataua populations separated by 200–400 km showed significant
isolation by distance and corresponding low rates of gene flow (Montúfar, 2007).
Similarly, high levels of genetic differentiation were described for 11 populations of
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Euterpe edulis separated by 40–1700 km in the Atlantic rainforest, a pattern
explained by historical fragmentation of the ecosystem (Cardoso et al., 2000).

The data suggest that the genetic diversity of many palm species with widespread
or fragmented distribution is influenced by both isolation and current or relatively
recent genetic connectivity at long distance or across barriers (Cibrián-Jaramillo et
al., 2009).

Effects of late Quaternary climatic variations on the population dynamics of
palms have been studied in one species in French Guyana, Astrocaryum sciophilum
(Charles-Dominique et al., 2003). The patchy distribution of this species under a
continuous forest cover could be explained by a very slow response to
environmental changes. The forest habitat has undergone repeated disturbances, in
particular recurrent fires during the Holocene, and the extant populations have been
slowly expanding from refuge nuclei over the past 5000 years. With an average
delay to sexual maturity of 170 years, and a mean colonization rate of 2.3 m per
year, this species is not likely to reach a populational equilibrium, because its
dynamic is slower than that of environmental fluctuations.

The pre-historical and historical role of humans on the distribution and abundance
of palms in tropical America is poorly understood and probably underestimated.
There are evidences of human disturbance in Amazonia throughout the Holocene
(Bush et al., 2000). Some areas were densely populated and intensively managed in
pre-Columbian times, until depopulation ca. 1600–1700 followed by extensive forest
regrowth (Heckenberger et al., 2003). Balée (1989) suggested that 11.8% of the 3.3
millions of square kilometers of terra firme forest of the Brasilian Amazon is
represented by anthropogenic forest of palms, vines and bamboo. Patches of Elaeis
oleifera in the central-western Amazon basin are often associated with terra preta do
indio, soils rich in organic matter and carbonized wood that indicate ancient
settlements (Henderson, 1995). Some vernacular names of palms refer to ancient
uses that are now totally abandoned. Some of these uses are likely to have impacted
palm populations in the past, such as starch extraction from Iriartea trunks (Bernal et
al., 2007). The diversity of palm archeological remains in the New World indicates a
long history of use, management and domestication of palms (Morcote-Ríos &
Bernal, 2001).

Role of Life History Traits in Palm Population Dynamics and Resilience

Life history traits depict the adaptation of palms to their environment (Kahn & de
Granville, 1992), and constrain their response to disturbance.

Vegetative Architecture

Considerable variation exists in palm vegetative architecture, depending on absence
or presence and extant of basal branching (clumped, stoloniferous, rhizomatous
palms), absence or presence and size of stilt roots, overall size of the palm (from
50 cm to 50 m), relative size of trunk and leaves, stem characters (subterranean,
aerial, self-supporting or lianescent, ramified or not), growth patterns including type
of establishment phase (Dransfield, 1978; Tomlinson, 1990; Tomlinson et al., 2011).
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This morphological variability allows palms to occupy a wide range of niches in the
tropical American realm (de Granville, 1992; Kahn & de Granville, 1992).

Some vegetative characteristics have a direct effect on individual or population
resilience. For example, the ‘saxophone growth’ type (Tomlinson, 1990), which is
characterised by a geotropic growth of the trunk in the early stages of development,
ensures an effective underground protection of the apical meristem of juvenile palms
and acaulescent adults. This strategy allows palms to resist the effects of falling
branches and palm leaves in the forest understory, a major cause of sapling mortality
in tropical forests (Aide, 1987), and also ensure survival after clearcutting of the
forest and fire, resulting in high survivorship of individuals (Charles-Dominique et
al., 2003). Various Attalea species with ‘saxophone’ growth, which are relatively
scarce in primary rainforest, become invasive in pastures, eventually producing
monodominant stands over extensive areas (Barot et al., 2005).

Stilt roots also have important implications on the ecology and resilience of palms
that develop these structures (Schatz et al., 1985). The highly specialized stilt-root
palm Socratea exorrhiza lacks an acaulescent establishment phase and is able to
elevate itself in shade at the young stage with minimal investment in trunk building,
progressively consolidating its architecture with increasing energy availability while
reaching higher understory strata (Hogan, 1986). The palm has a high survival rate at
all stages since it resists very efficiently the effects of branch fall. Impacted palms
are partially derooted, fall, re-root below the leaf crown and re-establish (Bodley &
Benson, 1980).

Clonality is another important adaptative strategy. In the Amazon forest in
particular, some species like Lepidocaryum tenue, Iriartella stenocarpa, Wettinia
drudei, Bactris bifida or Bactris bidentula can completely dominate the forest
understory through a stoloniferous or rhizomatous growth (Henderson, 1995).
Vegetative reproduction also allows individual recovery upon trunk harvest
(Chazdon, 1991; Siebert, 2000), after forest clearcutting, herbivory damages
(Sampaio & Scariot, 2010) or natural disturbance (de Steven, 1989). Clonality
allows particular mechanisms of individual resilience through physiological
integration of ramets, allowing resources translocation as a response to partial
damages to the palm (Mendoza & Franco, 1992).

Palm trunks often accumulate large quantities of energetic reserves in various
forms of carbohydrates (Tomlinson, 1990). Starch reserves play an important role in
the individual resilience under various natural and anthropogenic conditions, like
leaf harvesting, and act even at the seedling stage (McPherson & Williams, 1998).
However, carbohydrate resources have little direct use in tropical America and are
therefore not a significant cause of palm destruction. Only a few indigenous groups
extract starch from Mauritia or Manicaria (Heinen & Ruddle, 1974; Wilbert, 1976)
and the sweet medula of Ceroxylon is occasionaly used to feed pigs (Pintaud &
Anthelme, 2008).

Reproductive Traits

Flowering and Sexual Strategies. The morphology of the palm flower is rather
unspecialized (Dransfield et al., 2008). A typical palm flower is small (1–2 cm), with
3 imbricate sepals, 3 valvate petals, six stamens or staminodes, and 3 uniovulate
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carpels or a trifid pistillode. Flowers are arranged into clusters (sympodial, dyad,
triad, acervulus), well exposed and relatively open to pollinators (Henderson, 1986;
Silberbauer, 1990; Dransfield et al., 2008).

Spatial and temporal distribution and maturation of sex organs are very important
factors involved in the gene flow dynamics of plant species. A number of life history
strategies, discussed below, enhance genetic flow and promote genetic diversity
(Loveless & Hamrick, 1984).

Palms are generally monoecious, although the hermaphroditic flower is likely to
be the ancestral condition, present in five genera of Calamoideae and 20 genera of
Coryphoideae (Dransfield et al., 2008), while bisexuality is vestigial in most
functionally unisexual flowers (Adam et al., 2005; Daher et al., 2010), except in
staminate flowers of Phytelepheae (Barfod & Uhl, 2001). In tropical America, palms
with hermaphroditic flowers include 14 genera of Coryphoideae, mostly from the
Caribbean region. Dioecy is relatively uncommon with only ten genera with this
feature (e.g. Mauritiinae, Ceroxyleae). Dioecy implies different strategies of resource
allocation depending on the sex of the plant, and consequently differential selective
effects on male and female plants (Cepeda-Cornejo & Dirzo, 2010). Arecoideae is
the most diverse palm subfamily in tropical America with 39 genera, mostly
monoecious, with the exception of the dioecious Chamaedorea and Wendlandiella.
In general terms, monoecy is a common floral strategy in tropical forests. Monoecy
is a versatile strategy that allows all variation in the autogamy/allogamy ratio from
self-pollination to functional dioecy, permitting individual and populational
reproductive plasticity and adaptation of species to a wide range of environmental
conditions (Adam et al., 2005; Barot et al., 2005). Protogyny and protandry are the
underlying mechanisms favouring allogamy in monoecious palms. Both conditions
are frequent in tropical American palms, such as in Bactridinae, with Aiphanes being
protandrous (Listabarth, 1992b), while Acrocomia, Astrocaryum, Bactris and
Desmoncus are protogynous (Scariot & Lleras, 1991; Listabarth, 1992b; Henderson
et al., 2000). Protogyny is common in Cocoseae in general, and it is also found in
Cryosophila, and may have evolved as a response to beetle pollination (Henderson,
1986; Henderson et al., 2000). Protandry characterizes groups like Euterpeae and
Geonomateae (Ervik & Feil, 1997; Listabarth, 1993).

Palms show a great diversity in pollination syndrome but are predominantly
entomophilous and beetles-pollinated (Henderson, 1986; Silberbauer, 1990). Early
botanists thought that palms were wind pollinated (reviewed by Henderson, 1986).
While anemophily has been confirmed in several palms (Listabarth, 1992b; Luna et
al., 2005; Savolainen et al., 2006), a large body of data on palm entomophily has
accumulated over the last decades (e.g. Henderson, 1986; Anderson et al., 1988;
Barfod, 1988; Silberbauer, 1990; Olesen & Balslev, 1990; Ervik, 1993; Listabarth,
1992a, 1993, 1996; Bernal & Ervik, 1996; Couturier et al., 1997; Ervik et al., 1999;
Otero & Oyama, 2001; Nuñez et al., 2005; Nuñez & Rojas, 2008). Three
entomophilous syndromes are recurrent among palms: (i) bee pollination (mellio-
tophily), involving the genera Melipona, Apis and Trigona; (ii) beetle pollination
(cantharophily), involving mostly Nitidulidae, Staphylinidae and Curculionidae; and
(iii) fly pollination (myophily), involving families Calliphoridae, Syrphidae, and
Drosophilidae, characteristic of some understory palm species. Additionally, a mixed
syndrome named insect-induced wind pollination has been proposed for the
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understory palm Chamaedorea pinnatifrons, in which insects could induce the
release of small clouds of pollen in the forest atmosphere (Listabarth, 1992a).

Palms have developed various morphological and physiological adaptations to
enhance insect pollination. Palm flowers generally produce volatile organic
compounds (VOCs) attracting insects. A chemical survey carried out on tropical
American palms showed great diversity in floral scent composition, with variations
depending on pollination syndromes (Knudsen et al., 2001). Differentiation in floral
odours could play a role in genetic divergence and speciation in palms. Examples of
floral odours differentiating closely allied taxa include the genera Ammandra and
Phytelephas (Ervik et al., 1999), sympatric species of Phytelephas (Ervik et al.,
1999) and Geonoma (Knudsen, 1999a,b, 2002). It is not clear, however, if floral
scent divergence is a cause or a consequence of speciation, merely maintaining
reproductive isolation in the second case (Knudsen, 1999b). Floral thermogenesis is
also widespread in the palm family (Kuchmeister et al., 1993; Ervik & Barfod, 1999;
Nuñez et al., 2005; Nuñez & Rojas, 2008). Thermogenesis enhances evaporation of
floral scent, increasing attractiveness to insects, mostly beetles (Thien et al., 2000)
and represents a direct energetic reward (Ervik & Barfod, 1999). Nectar is another
important and common insect reward of palm flowers. Nectar is produced mainly
from septal nectaries, the most common type of nectary in monocotyledons (Schmid,
1983; Stauffer et al., 2002).

Seed Dispersal. The morphology of palm fruits is variable (Dransfield et al., 2008),
but can be classified as either berry (fleshy or fibrous mesocarp, one seed and thin
endocarp) or drupe (endocarp slerotic and thick). The palm fruit is generally ovoid to
ellipsoidal and with a diameter varying between 4.5 mm and 50 cm. Both mesocarp
and endosperm provide food for animals, and the texture of the mesocarp and the
seed size determine modalities of dispersal (Tomlinson, 1990).

Large palms in the genera Attalea, Astrocaryum, Euterpe, Oenocarpus, Mauritia,
Roystonea or Ceroxylon produce numerous large inflorescences that provide
numerous large fruits. These palms are key resource for frugivorous species,
providing fruits year-round (Goulding & Smith, 2007). In general, palm communi-
ties produce large amounts of organic matter annually in the form of fruits and seeds
(Kahn & de Granville, 1992).

Palm dispersal shows a great diversity of mechanisms in relation to the high
variability of fruit morphology, but zoochory is the dominant dispersal mode in the
palm family (Zona & Henderson, 1989).

Fleshy or fibrous, lipid-rich mesocarps of small to medium-sized palm fruits are
attractive to birds (Snow & Snow, 1978; Tannenbaum & Wrege, 1978; Moraes,
1991; Bühler, 1993; Galetti & Guimarães, 2004), bats (Lobova et al., 2009), non-
flying mammals (Smythe, 1986, 1989; Bodmer, 1991; Hoch & Adler 1997; Norconk
et al., 1998), and fish (Piedade et al., 2006). Fruits with a fibrous mesocarp and an
endosperm protected by a thick and hard endocarp, like those of Attalea and
Astrocaryum, or with a very hard endosperm as in Aphandra, are important food
resources for rodents, agouties and pacas (Forget, 1991, 1997; Beck & Terborgh,
2002; Silvius & Fragoso, 2003; Boll et al., 2005). Peccaries are generalist palm fruit
consumers and contribute to the dispersal of a high number of palm species in
tropical American forests (Beck, 2006). Tapirs are also important fruit consumers, as
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are primates (Norconk et al., 1998; Henry et al., 2000; Olivier et al., 2000; Fragoso
et al., 2003; Link & Di Fiore, 2006). Dispersal by reptiles (saurochory) has been
reported for Serenoa (Liu et al., 2004).

Zoochory plays a fundamental role in the long distance seed dispersal in palms.
The fruits of Oenocarpus bataua, Euterpe precatoria and some species of Bactris
are consumed and dispersed by the oilbird (Steatornis caripensis), that can travel up
to 73.5 km in one day and colonies of oil birds can transport millions of palm seeds
annually (Tannenbaum & Wrege, 1978; Snow & Snow, 1978; Holland et al., 2009).
Evidence of long distance seed dispersal has also been reported for Attalea phalerata
by crested caracaras (Caracara plancus; Galetti & Guimarães, 2004). The role of
bats as long distance dispersers has been little studied in tropical American palms,
but the literature reports that about 15 palm species are dispersed by bats in tropical
American forests (chiropterochorous syndrome; see Lobova et al., 2009), and
additional new data from French Guiana suggest that most palm species from
Central French Guyana are potentially dispersed by bats, at least occasionally
(Lobova et al., 2009). Research on long distance dispersal by bats in Indonesia
suggested that Old World fruit bats have the potential to disperse small seeds over
hundreds of kilometers (Shilton et al., 1999). Lobova et al. (2009) suggests that bats
are effective dispersers because they are (i) selective and disperse mature seeds, (ii)
the majority of fruits are taken away from the parent tree, (iii) they usually defecate
small diasporas in flight with an effective dissemination over large areas, and (iv) the
digestive systems of bat do not destroy seeds.

The seed dispersion of riparian palms like Bactris riparia, Astrocaryum jauari,
Leopoldinia pulchra, has been poorly explored, although ichtyochory (fish dispersion)
could be an optimal dispersal mechanism for many species of várzea and igapó forest.
The spiny palm Astrocaryum jauari forms oligarchic populations on flooded areas
along the Amazonian rivers. Dispersal studies in the central Amazon basin reported
that ripe fruits of A. jauari were eaten by 16 fish species, some of them without
breaking the seed (Gottsberger, 1978; Piedade et al., 2006). Socratea exorrhiza has
also been associated to the ichthyochory syndrome (Gottsberger, 1978). Hydrochory is
probably another important way of seed dispersal in riparian palms that often form
oligarchic populations close to rivers and lakes (Goulding & Smith, 2007). Hydro-
chory (including seed transport by floating islands and large debris) may be
sporadically involved in long-distance seed dispersal. For example, the palm flora of
Marajo Island, in the Amazon estuary, comprises palm species that originate in the
western and central regions of the Amazon basin and it is therefore assumed that palm
diversity in Marajo is influenced by river dispersal (Henderson et al., 1991).

Humans are also important dispersers of palm seeds in tropical forests. In
particular, local people who move across the Amazon forest transport palm fruits as
food reserve during these travels. The distribution of palm species like Astrocaryum
aculeatum is certainly influenced by humans (Kahn & Moussa, 1995, 1999). The
reach of human movements in the Amazon basin is highly variable and can vary
from few to thousands of kilometers. Additionally, the modern regional trade of non-
timber forest products is structured around convergence centers like Iquitos markets
in the Peruvian Amazon (Mejía, 1992; Balslev et al., 2008), from where a percentage
of the genetic diversity of the edible palm species can be dispersed again to other
places through fruit purchase.
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Gene Flow Through Pollen and Seed Dispersal and its Alterations. Gene flow is an
essential force underlying the genetic connectivity among natural populations at all
scales. Intense and widespread gene flow will act as a homogenizing force
preventing genetic divergence and subpopulation structuring (Slatkin, 1985), while
restricted gene flow will favour population isolation and, ultimately, speciation
(Loveless & Hamrick, 1984; Slatkin, 1985; Lowe et al., 2004).

In natural plant populations with sexual reproduction, the equilibrium between
homogenization and heterogeneity of the genetic pool depends primarily upon the
dynamics of pollen and seed dispersal (Aldrich & Hamrick, 1998; Godoy & Jordano,
2001; Hardesty et al., 2005, 2006). Both pollen and seed dispersal are constrained by
a number of ecological factors including density and aggregation of individuals,
effects of habitat heterogeneity (Vormisto, 2000; Vormisto et al., 2000; Svenning,
2001) and predation (Janzen, 1970), all of which result in the establishment of
descendents (Luna et al., 2005). For plant populations, total gene dispersal is
composed of pollen dispersal (pollination) and seed dispersal; the latter contribute
twice as much to gene dispersal because pollen is haploid while the embryo is
diploid (Slatkin, 1985; Hamilton, 1999).

Whereas pollen flow and subsequent pollination are directly involved in the
formation of the genetic identity of the next generation individuals (Proctor et al.,
1996), seed dispersal shapes the overall distribution of genes within and among
populations.

The use of genetic markers for paternity studies has made it possible to explore
patterns of pollen flow and such studies have revealed that a significant fraction of
tropical trees are outcrossed, with relatively long-distance pollination by insects playing
an important role in gene flow (Stacy et al., 1996; Latouche-Hallé et al., 2004).

Seed dispersal is also a strong force structuring plant communities and their
genetic diversity (Loveless & Hamrick, 1984; Wenny, 2001; Wyatt & Silman, 2004;
Tristram & Plotkin, 2006). Dispersal favors the escape of seeds and seedlings from
high mortality areas caused by distance or density-dependent factors near parent
trees (Escape hypothesis: Howe & Smallwood, 1982; Clark & Clark, 1984). The
escape strategy increases the survival rate of genotypes far away from the parent
trees reducing the probability of inbreeding for the next generations. Studies carried
out with Iriartea deltoidea (Sezen et al., 2007) suggest that seedling recruitment is
related to efficient dispersal since more than 70% of seedlings were dispersed at least
50 m away from the parent trees. A seed with lower dispersal limitation has a higher
probability to colonize new habitats with patchy distribution such as light-gaps in
forest (Colonization hypothesis; Augspurger, 1984). Colonization of new habitats
starts with the migration and establishment of few individuals in these areas. The
genetic pool of these new populations will be dependant on the founder effect,
implying limited initial diversity and high genetic drift creating a strong bottleneck
(Lowe et al., 2005). A genetic study of founder populations of Iriatea deltoidea in
secondary forest (Sezen et al., 2007) illustrated the low genetic diversity of
individuals in secondary forest in comparison with individuals in adjacent
old-growth forest, and the persistence of this effect through several generations, in
lowlands of Costa Rica.

A particular modality of seed dispersal called directed, or targeted, dispersal was
proposed by Wenny (2001). It occurs when a dispersal agent deposits seeds in
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suitable areas for their germination and development, and it assumes a non-random
process among plant, dispersers, and areas (Wenny, 2001). The directed seed
dispersal by the frugivorous bird Cephalopterus penduliger (umbrellabird) resulted
in a significantly higher genetic diversity of seedlings of Oenocarpus bataua in
targeted deposit areas of the tropical forest of north-western Ecuador, compared to
other sites (Karubian et al., 2010). Non-random dispersal—expressed as seedling
patches across the forest—have been reported for small and medium size-seeded
palms including Iriartea deltoidea, Oenocarpus bataua and Euterpe edulis (Pizo,
2001). The behaviour of the vertebrate seed dispersers and the ecology of the habitat
are key factors shaping these dispersal and genetic patterns (Forget, 1997; Svenning,
2001). In some cases, dispersal enhances germination after gut passage in vertebrates
(Henry et al., 2000; Fragoso et al., 2003).

Anthropogenic effects (logging, harvesting, fragmentation, habitat degradation) also
reduce the rate of outcrossing, favouring high rates of self-fertilization, and genetic drift
among isolated and reduced sub-populations (Hamilton, 1999; Cardoso et al., 2000;
Sezen et al., 2007). Where ecological conditions are altered, such as in open forest,
insects face increasing distances to cover between trees while suffering major exposure
to sun radiation, elevated temperatures and lower humidity, thus reducing their
efficiency as pollinators. Alteration of habitat ultimately results in reduction of
pollinator abundance and diversity (Powell & Powell, 1987; Steffan-Dewenter &
Tscharntke, 1999; Samejima et al., 2004; Brosi, 2009; Winfree et al., 2009; Dauber et
al., 2010; Nayak & Davidar, 2010; Quintero et al., 2010). Studies in fragmented
forests in Mexico revealed that arthropod fauna associated with inflorescences of
Astrocaryum mexicanum was negatively affected by habitat alteration, however
without consequence on fruit set (Aguirre & Dirzo, 2008). In other contexts, pollen
limitations can also impact fruit set in palms (Cunningham, 1996).

Increasing evidence supports the hypothesis that anthropogenic disturbance
directly and indirectly induces the decline of insect pollinators (Potts et al., 2010).
The decline of pollination services will affect the genetic structure of wild plant
populations reducing levels of gene flow and genetic variation. These effects can
results in inbreeding depression and consequently a reduction of the ability of plant
populations to respond to short and long term environmental changes. Although
wind could partially sustain gene flow, the effect of this vector is likely to be limited
in most palm populations, especially of tropical forest understory, where palms are
most diverse.

The sex ratio of populations can also be affected by human impact, either directly
by destructive harvesting of female trees, as it is the case for Mauritia (Holm et al.,
2008) or indirectly by differential survival between sex in disturbed environments
like pastures, as for Ceroxylon (Anthelme, Sanín & Pintaud, pers. obs.). Plants of
different sex also tend to behave differently under leaf harvest, with males being
more resilient (Oyama & Mendoza, 1990).

Although various studies on the phenology of palm populations and communities
have been conducted in tropical America (Croat, 1975; Beach, 1984; Myers, 1984;
de Steven et al., 1987; Zona, 1987; Sist, 1989a; Ibarra-Manríquez, 1992; Peres,
1994; Henderson et al., 2000; Piedade et al., 2006), little attention has been paid to
phenological alterations in disturbed environments. Barot et al. (2005) found
phenological variation in Attalea speciosa when comparing populations in pastures,
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dense secondary stands and primary forest. These modifications are likely to
influence gene flow.

Demography and Genetics of Palm Populations

Role of Population Structure and Demography on Resilience Levels. Seedlings are
often numerically dominant in the population structures of lowland tropical
American forest palms, due to high seed production and high germination rates
(Sist, 1989b; Sist & Puig, 1987). Mortality is high before the acaulescent juvenile
stage, which is in general highly resilient. Therefore, demographic strategies of
palms usually combine a high investment in reproduction with high survival of
established individuals (Sampaio & Scariot, 2010).

Palms with a long, acaulescent establishment phase, and a long subcanopy to
emergent reproductive phase, tend to have a U-shaped population structure due to
the accumulation of juveniles and adults and the scarcity of subadults in phase of
rapid trunk growth (Vallejo et al., 2004). Forms of extractivism that specifically
target subadults, such as fiber extraction of Astrocaryum chambira (Coomes, 2004),
although having a seemingly minimal impact on the forest, can truncate natural
population dynamics by inhibiting adult recruitment. These bimodal population
structures promote on the other hand positive responses to disturbance, including
density increase in selectively logged forest. Many forest palm populations include
numerous acaulescent juveniles in the establishment phase, that accumulate in the
understory until a light gap provides them the necessary energy to build an aerial
stem and reach sexual maturity (Kahn & de Granville, 1992). Acaulescent juveniles
can maintain themselves almost indefinitely at this stage in the deep shade of the
understory (Charles-Dominique et al., 2003). Artificial light gaps like those
produced by selective logging can induce a massive growing burst of these juveniles
and quickly convert them in a dominant subcanopy, canopy or emergent palm layer
(Pintaud, 2006). Light-gap dynamics (Martínez-Ramos et al., 1988; Cintra & Horna,
1997), and other intermediate-level disturbances, either human-induced or natural,
are probably very important in shaping aggregative distribution patterns of palms in
forests, like huicungales, which are localized stands of subcanopy Astrocaryum
species in the western Amazon basin (Vallejo et al., 2004).

Genetic Structure of Palm Populations. Wild palm populations tend to show high
levels of genetic diversity. Genetic studies on palm populations of Euterpe edulis
(Cardoso et al., 2000; Conte et al., 2003; Gaiotto et al., 2003), Chamaedorea spp.
(Cibrián-Jaramillo et al., 2009; Luna et al., 2005; Luna et al., 2007), Astrocaryum
mexicanum (Eguiarte et al., 1992), Bactris gasipaes var. chichagui (Couvreur et al.,
2006), Oenocarpus bataua (Montúfar, 2007), Ceroxylon echinulatum (Trénel et al.,
2008) have reported high levels of genetic variation in comparison to other tropical
trees. Additionally, evidence of high allelic variation at SSR loci (short sequence
repeat) has been found for Attalea phalerata (Choo et al., 2010), Acrocomia aculeata
(Nucci et al., 2008) and Oenocarpus bacaba (Lepsch-Cunha et al., 2003).
Exceptions to the pattern of high diversity were reported by McClenaghan &
Beauchamp (1986) and Roncal et al. (2007). The former research suggested a low
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allozymic variation in the long-lived Washingtonia filifera that was associated with
recent colonization events. The latter work described low levels of genetic diversity
on Geonoma macrostachys based on ISSR data (inter simple sequence repeats);
these results were explained by technical limitations and sample design.

High genetic variation of palms could be explained by life history traits (high
pollen and seed flows) and biogeographical history. High rates of gene flow in
palms may have either positive or negative effects on population resilience. Gene
flow facilitates recovery of genetic diversity during secondary forest dynamics
(Sezen et al., 2007), but can also promote genetic pollution of wild populations
closely allied to crops like Elaeis guineensis and Bactris gasipaes, in areas of
sympatry of the wild and cultivated plants. In western Ecuador, genetic pollution of
the wild Bactris gasipaes var. chichagui by the cultivated B. gasipaes var. gasipaes
is likely to decrease fitness of natural populations by introgression of genes from
the cultivated pool having a negative phenotypic impact (larger fruits maladapted
to bird dispersal, decrease in drought resistance and shade tolerance). This genetic
alteration is favored by the highly fragmented remnant habitat of the wild
populations, with increased edge-effects with bordering fields of the palmito crop
(Pintaud et al., 2008a).

Interpopulation genetic differentiation tends to be lower in palm populations than
in other tropical trees. A genetic study, using microsatellite loci showed low genetic
differentiation between two populations of Euterpe edulis isolated by 22 km in the
Atlantic Rainforest (Gaiotto et al., 2003). Luna et al. (2005), exploring the effect of
the life history on genetic structure of two Chamaedorea species, found less genetic
divergence for the abundant wind-pollinated understory palm C. tepejilote than for
the scarce entomophilous climbing palm C. elatior. Moderate genetic structure for
the dioecious palm C. ernesti-augusti has been reported in Belize (Cibrián-Jaramillo
et al., 2009).

Conclusions and Directions for Future Work

Current knowledge on palm resilience in relation to anthopogenic disturbances in
tropical America remains relatively scarce, and mainly focused on the effects of two
disturbance drivers: habitat fragmentation and harvest (Fig. 4). Several palm-rich
regions of South America are especially understudied (the north-western Pacific
coast, the Andes, the northern part of the South Cone).

Common methodological approaches, such as the use of transition matrices (see
Pinard & Putz, 1992), and the setting of removal experiments, contribute to give
strength to the available data and allow for meaningful comparisons. These studies
have direct applications for management practices, providing quantitative estimates
of turnover and intensity of extraction for sustainable use of the target species.
However, a more generalized use of permanent plots and long-term studies is
needed, since extrapolation based on short-term studies is uncertain for slow-
growing palms. Permanent plots set near rain forest research stations are an
extremely valuable resource (Yasuni, Ecuador, e.g. Vormisto et al., 2004; La Selva,
Costa-Rica, e.g. Sezen et al., 2007; Norden et al., 2009; El Cielo, Mexico, Endress et
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al., 2004b; Los Tuxtlas, Mexico, Martínez-Ramos et al., 1988; Barro Colorado
island, Panama, e.g., Wright & Duber, 2001) that could be more intensively used for
this purpose, inclusively by analyzing more throughoutly existing data.

Despite a relatively high number of studies on palm resilience, this review
highlighted a lack of integration of the results obtained into the ecological
conceptual framework (Fig. 4), with discussions focused on conservation and on
rehabilitation of degraded ecosystems. An interesting attempt of integration was that
of Orellana (1992), who proposed a classification of palm resilience based on the
C-S-R strategies of Grime (1979). In order to progress in this direction, the
development of a mechanistic approach is required in future research, that should
explore various disturbance types taking more into account the following aspects:

& Microenvironmental information, including analysis of alteration of soil
composition, moisture and microclimate.

& Species traits (morphological, physiological, reproductive), and their variation
under disturbance

& Palm communities, for direct comparisons among species
& Representativeness of palm floras and ecosystems, unbiaised by socio-economic

considerations or conservation concern, in order to gain a more general overview
of resilience patterns in palms.

Under these conditions, data on the resilience of tropical American palms may be
used consistently to discuss crucial ecological concepts such as the intermediate
disturbance hypothesis, which is understudied in the tropics (Bongers et al., 2009),
and the role of plant-plant interactions, suggested to have a positive impact on
ecosystem resilience in humid tropical environments (Gomez-Aparicio, 2009),
although more commonly described in highly constrained environments so far
(stress gradient hypothesis; see Brooker et al., 2008 for a review).
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