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Abstract

Background: Failure to detect a disease agent or vector where it actually occurs constitutes a serious drawback in
epidemiology. In the pervasive situation where no sampling technique is perfect, the explicit analytical treatment of
detection failure becomes a key step in the estimation of epidemiological parameters. We illustrate this approach with a
study of Attalea palm tree infestation by Rhodnius spp. (Triatominae), the most important vectors of Chagas disease (CD) in
northern South America.

Methodology/Principal Findings: The probability of detecting triatomines in infested palms is estimated by repeatedly
sampling each palm. This knowledge is used to derive an unbiased estimate of the biologically relevant probability of palm
infestation. We combine maximum-likelihood analysis and information-theoretic model selection to test the relationships
between environmental covariates and infestation of 298 Amazonian palm trees over three spatial scales: region within
Amazonia, landscape, and individual palm. Palm infestation estimates are high (40–60%) across regions, and well above the
observed infestation rate (24%). Detection probability is higher (,0.55 on average) in the richest-soil region than elsewhere
(,0.08). Infestation estimates are similar in forest and rural areas, but lower in urban landscapes. Finally, individual palm
covariates (accumulated organic matter and stem height) explain most of infestation rate variation.

Conclusions/Significance: Individual palm attributes appear as key drivers of infestation, suggesting that CD surveillance
must incorporate local-scale knowledge and that peridomestic palm tree management might help lower transmission risk.
Vector populations are probably denser in rich-soil sub-regions, where CD prevalence tends to be higher; this suggests a
target for research on broad-scale risk mapping. Landscape-scale effects indicate that palm triatomine populations can
endure deforestation in rural areas, but become rarer in heavily disturbed urban settings. Our methodological approach has
wide application in infectious disease research; by improving eco-epidemiological parameter estimation, it can also
significantly strengthen vector surveillance-control strategies.
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Introduction

Chagas disease is caused by Trypanosoma cruzi (Kinetoplastida:

Trypanosomatidae), a parasitic protozoan transmitted through the

feces of infected blood-sucking hemipterans (Reduviidae: Triato-

minae) [1,2]. Human infection is endemic throughout Latin

America, where it causes loses of more than 650,000 disability-

adjusted life years annually [3]. From 1990, burden figures have

declined by about 80% [3,4], reflecting the success of Chagas

disease control programs over vast geographical areas [5].

However, the burden of Chagas disease in the Latin American-

Caribbean region is still consistently larger than the combined

burden of malaria, leprosy, the leishmaniases, lymphatic filariasis,

onchocerciasis, schistosomiasis, viral hepatitides B and C, dengue,

and the major intestinal nematode infections [6,7]. Because most

transmission is mediated by household-infesting insect vectors, and
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because no effective treatment or vaccine are available for large-

scale use, the elimination of domestic triatomines was defined as

one major goal of control programs, together with systematic

serological screening of blood donors [8,9].

The widespread occurrence of native triatomine species that

reinvade insecticide-treated households is a major difficulty for the

consolidation of Chagas disease control [9–12]. Except for a few key

vector species (e.g., [13]), the ecological dynamics of reinfestation

are still poorly understood, and it is expected that research on

sylvatic triatomine populations will help confront the challenge of

residual, low-intensity disease transmission mediated by sylvatic

vectors. The situation in the Amazon, where enzootic T. cruzi

transmission cycles involve a great diversity of vectors and reservoir

hosts (e.g., [14,15]), suitably illustrates these concerns. Adventitious

adult triatomines maintain continuous, low-intensity transmission in

rural (and some urban) settings; as a result, human infection is

hypoendemic in the region, with about 100,000 to 300,000 people

chronically carrying T. cruzi [16,17]. Sylvatic triatomines are also

involved in localized disease outbreaks related to oral T. cruzi

transmission via contaminated foodstuffs [14,16], and account for

the relatively high infection prevalence (4–5%) reported among

extractivist forest workers such as piaçava palm fiber collectors

[15,16]. The vast majority of these transmission events are mediated

by triatomines of the genus Rhodnius, which are primarily associated

with palm trees [18–20]. The widespread occurrence of palm tree-

living Rhodnius populations in Amazonia, together with epidemio-

logical evidence suggesting their active role in disease transmission,

underscores the importance of obtaining reliable estimates of palm

tree infestation rates by these vectors. Such estimates are currently

unavailable, and this substantially hinders our understanding of

Chagas disease transmission dynamics in the Amazon.

Palms of the genus Attalea (Arecoideae) play a major role as

breeding and foraging habitats of sylvatic Rhodnius populations in

Amazonia and other Neotropical regions (e.g., [18–23]). The

strong Attalea-Rhodnius association led to the proposal that the

presence of Attalea palms can be used as an ‘ecological indicator’ of

areas where enzootic T. cruzi transmission cycles probably occur

[23]. Later studies showed that the probabilities of palm infestation

by triatomines can differ among sites, landscapes, and palms with

varying structural traits [20,21]. We moved beyond these

preliminary proposals, based on limited datasets and crude

analytical approaches, and asked under what sets of circumstances

is the potential of palms to harbor bug colonies realized; in other

words: are all Attalea equally likely to be occupied by Rhodnius bugs?

If not, what are the likely causes of variation? In a region as vast as

Amazonia, knowledge of the environmental determinants of palm

infestation by triatomines may represent a key tool to optimize

resource allocation for epidemiological surveillance. Should

resources be aimed at intervention in one particular region, in

one particular type of landscape, or on certain particular types of

palms – regardless of the region and landscape where they are

found? Answers to these questions may prove crucial to enhance

disease prevention programs [20,21].

The estimation of palm infestation by triatomines is limited by

the inescapable reality of field sampling: the target organisms may

be present at a site yet go undetected during the survey. There are

two standard solutions to this pervasive problem. One is to develop

improved sampling techniques that bring detection close to

perfection. The other is to incorporate detection failure explicitly

in the analyses; estimates of infestation can thus be derived that

statistically compensate for false absences. Near-perfect sampling

techniques are expensive and labor-intensive – clearly a problem-

atic option for a vast study area. In this paper, we apply models

developed by wildlife biologists to estimate site-occupancy

probabilities when detection of the target organism is imperfect

[24,25]. We define palm infestation as site (i.e., palm) occupancy,

the probability that a palm is occupied by at least one Rhodnius spp.

Our approach leads to strong inferences on Attalea palm

occupancy rates by Rhodnius spp. and allows for the comparison

of models relating palm occupancy to environmental covariates at

three different scales: region, landscape, and individual palm. We

aimed at (i) describing palm infestation patterns and the way they

vary at different spatial scales; (ii) identifying the most likely causes

of such variation; and (iii) incorporating this information into

predictive models of palm occupancy that can be useful in the

context of disease risk mitigation. More generally, we illustrate a

methodological approach that yields reliable estimates of eco-

epidemiological parameters out of imperfect data.

Methods

Sampling strategy
Our sample of 298 Attalea palms spanned four regions (totalling

19 localities) in two countries (Fig. 1). The westernmost region was

Napo, a white-water river system close to the Ecuadorian Andes.

(All model covariates are named in bold typeface on their first

appearance in the Methods section.) Moving to the east, we

sampled three regions in the Brazilian Amazon: the lower right

bank of the black-water Negro river, the left bank of the white-

water Amazon river east of Manaus, and the forested part of the

northern Branco river basin, an intermediate clear/white-water

system. These survey sites spanned areas between ,120660 km

(Napo) and ,30620 km (Negro), and were located, respectively,

within each of the following moist forest ecoregions [26]: Napo,

Japurá/Solimões-Negro, Uatumã-Trombetas, and Guyanan

Highlands/Piedmont. From field observations and available

literature [27,28], we ranked our survey regions in decreasing

order of soil fertility as Napo, Amazon, Negro, and Branco. Thus,

or sampling is representative of four ecologically distinct sub-

regions influenced by the three main Amazonian hydrological

systems – white-, black-, and clear-water.

Author Summary

Blood-sucking bugs of the genus Rhodnius are major
vectors of Chagas disease. Control and surveillance of
Chagas disease transmission critically depend on ascer-
taining whether households and nearby ecotopes (such as
palm trees) are infested by these vectors. However, no bug
detection technique works perfectly. Because more
sensitive methods are more costly, vector searches face a
trade-off between technical prowess and sample size. We
compromise by using relatively inexpensive sampling
techniques that can be applied multiple times to a large
number of palms. With these replicated results, we
estimate the probability of failing to detect bugs in a
palm that is actually infested. We incorporate this
information into our analyses to derive an unbiased
estimate of palm infestation, and find it to be about 50%
– twice the observed proportion of infested palms. We are
then able to model the effects of regional, landscape, and
local environmental variables on palm infestation. Individ-
ual palm attributes contribute overwhelmingly more than
landscape or regional covariates to explaining infestation,
suggesting that palm tree management can help mitigate
risk locally. Our results illustrate how explicitly accounting
for vector, pathogen, or host detection failures can
substantially improve epidemiological parameter estima-
tion when perfect detection techniques are unavailable.

Chagas Disease Vector Ecology in Amazonia
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Figure 1. Fieldwork areas and the approximate range (see ref. [29]) of palm tree species investigated for infestation by Rhodnius
spp.: orange, Attalea butyracea; green, Attalea maripa; and blue, Attalea speciosa. NA, Napo region, Ecuador; NE, Negro river region, Brazil;
AM, Amazon river region, Brazil; and B, Branco river region, Brazil.
doi:10.1371/journal.pntd.0000620.g001
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Within each region, we surveyed Attalea palms in three

landscape classes: forest, rural, and urban. At each site, a

sample of non-adjacent palms was selected haphazardly for the

survey. Urban palms where sampled in plots within the street

framework of cities, towns, or villages. Rural palms were

surrounded by farming land, orchards, or pasture on previously

forested sites. Forest palms were located in forested sites, most

often medium to large fragments of mature secondary forest.

These three landscape classes were easily distinguished in the field,

and palms sampled in each of them were at least 50–100 m from

the nearest patch of landscape in another class. Our sample

included palms of three species (A. maripa, A. speciosa, and A.

butyracea); their known distribution is shown in Fig. 1. All three

species are large, solitary palms with large inflorescences/

infructescences and in which old leaf bases remain adhered to

the stem after leaf abscission. Palm identification followed

Henderson et al. [29].

Palm traits
Individual palm trees vary considerably with regard to the

amounts of epiphytic vegetation and dead organic material (dead

fronds, husks, flowers, fruits, fibers, and dead epiphytes) that

accumulate on their crowns and stems. We used a pre-established

score system [21] to measure the approximate amount of live

epiphytic plants and decomposing organic material present on

each palm. These epiphyte and organic matter values were first

recorded in the field and, for about 85% of palms, cross-checked

by another team member by examination of individual palm

photographs; we then derived a mean ‘organic score’ value for

each palm – ranging from 0 to 4 points, with higher values

denoting ‘dirtier’ palms. We measured palm stem height as the

linear distance between the ground and the lowest base of a green

leaf. Finally, we preliminarily assessed the effects of slash-and-burn

farming practices, which are commonplace across the Brazilian

Amazon, on palm infestation. We defined two coarse categories to

distinguish palms standing on plots that had a fire less than about

two years before our survey from palms on plots that were not

burnt over a similar period. Fire information was obtained from

landowners and complemented by recording fire scars on palms

and nearby trees and the presence and size of fire-adapted pioneer

trees in each survey plot.

Detecting infestation
We sampled each individual palm with a combination of

mouse-baited adhesive traps [30,31] and manual bug searches

[32] (Fig. 2). Traps were set in the afternoon and checked the

following morning, after approximately 15 hours of operation. We

placed traps among organic debris or epiphytes in the palm crown,

around the upper end of the stem, or directly in the angle between

palm fronds. Most palms (234, or 78.5%) were sampled with four

traps, with a minimum of one trap in eight palms and a maximum

of nine in one palm. The total trapping effort was 1,098 trap-

nights. Manual searches were performed on the organic matter of

the palm crown after trap removal. We searched either directly in

the palm crown or by collecting organic material in a 50-liter

plastic bag and later checking bag contents on a white canvas.

Both sampling techniques were used in 255 palms (85.6%), only

manual searches in nine, and only traps in 34. Each individual

trap or manual search was treated as a sampling event yielding a

binary result of either ‘‘1’’ for bug detection or ‘‘0’’ for no bugs

detected. Thus, a typical palm tree was sampled five times – four

traps and one manual search. Each detection history is represented

by a row of ‘‘1’’s and ‘‘0’’s. For instance, ‘‘1100-----0’’ represents a

palm with two positive traps, two negative traps, and a negative

manual search (the last ‘‘0’’); the five dashes indicate that only four

traps, up to a maximum of nine, were operated in this particular

palm. The raw dataset is provided as Supporting Information

(Dataset S1).

Figure 2. Sampling Rhodnius spp. in Attalea palm trees. A: a ladder is used to climb an Attalea butyracea palm to remove traps and manually
search for bugs. B: a mouse-baited adhesive trap with several Rhodnius specimens adhered to the tape.
doi:10.1371/journal.pntd.0000620.g002

Chagas Disease Vector Ecology in Amazonia

www.plosntds.org 4 March 2010 | Volume 4 | Issue 3 | e620



Data analysis
We combine two different but interconnected procedures:

parameter estimation and model selection. All our models have a

biological process component that expresses the probability that a

palm is occupied by bugs (y), and a sampling process component

that expresses the probability that we detect bugs in a palm where

they actually occur (p). This hierarchical approach makes it

possible to estimate the probability that animals are present in

places where they are not seen, accommodating an explicit

treatment of imperfect detection [24,25,33,34]. We fit models

using the software PRESENCE [35], which provides maximum-

likelihood estimates of parameters and their standard errors (SE) in

user-defined models that can contain covariates of occupancy

and/or detection. Before performing the analyses, we built a set of

23 models (below) each expressing an a priori hypothesis of palm

occupancy and bug detection. Model selection followed the Akaike

Information Criterion (AIC), which combines information and

maximum-likelihood theories to find models with the best

compromise between model fit and complexity [36]. We use

model selection as a tool for hypothesis testing: each model

represents one hypothesis, and hypotheses represented by models

with lower AIC values are better supported by the data.

Model structure
We treat palms as independent sites with regard to occupancy

by bugs of the genus Rhodnius; to ensure independence, several sites

were surveyed within each locality, and neighboring palms were

rarely sampled. Live-bait traps and manual searches are treated as

replicate sampling events with an average probability of detecting

bugs, conditioned on palm occupancy. Field observations and

exploratory analyses motivated us to compare the performance of

manual searches and traps in detecting bugs; furthermore, we

observed relatively high numbers of triatomines per palm in the

Napo region, suggesting that bug presence might be easier to

detect in Napo palms than elsewhere. Accordingly, we modeled

detection always as an additive logistic function of two binary

covariates: sampling technique and region, with the latter

specifying only whether sampling took place in Napo or elsewhere.

Since we aimed at understanding which spatial scale contributes

most to explaining observed variation in palm occupancy, we built

models that include different palm, landscape, and regional

covariates of occupancy. Our a priori set of 23 models includes

six regional models, four landscape models, six local (palm)

models, six models with different combinations of covariates from

different scales, and one null model without covariates of

occupancy. Some of the combined models include interactions

between covariates at different scales. In particular, considering

the more fertile soils of the Napo region, we model an interaction

between Napo and the rural landscape, as well as between Napo

and the forest landscape. These models represent hypotheses

stating that the relationship between landscape and occupancy

differs between Napo and the remaining regions. For ease of

presentation, we will report modeling results grouped by spatial

scale, concluding with a comparison of the best models across

scales.

Results

Null model
We first estimated detection probability with a simple model

that has no covariates of palm occupancy. We designate this model

with the notation ‘y(.), p(manual+Napo)’, where the ‘.’ denotes no

covariates on the occupancy part of the model and ‘manual’ and

‘Napo’ designate the technique and regional covariates of

detection, respectively. Under this null model of no predictable

variation in palm occupancy rates, the probability of detecting

bugs where they actually occur ranges from 0.05 (SE = 0.01) with

traps in the Brazilian Amazon to 0.82 (SE = 0.05) with manual

searches in Napo, Ecuador. Both covariates increase detection

probabilities; the Napo effect estimate is 3.01 (SE = 0.3). Had we

not taken detection failure into account, we would report a

proportion of 0.24 palms occupied by bugs – the number of palms

where we detected bugs divided by the total number of palms

sampled, which when expressed as a percentage is the classical

‘infestation index’ [9] (Table 1). When we consider that the

probability of detection may be less than one, our null model

estimate of occupancy is 0.59 (CI95% 0.42–0.75).

Regional models
We found little evidence of regional variation in occupancy, as

shown by the small differences in AIC values between the null

model and models with regional covariates (Table 2). When we

constrain models to only one regional covariate, the region that

contributes most to explaining the data is Napo. All the models

that estimate occupancy in the Napo region separately from other

regions set that value at 0.68 (CI95% 0.50–0.83), almost twice the

average occupancy estimated for Brazilian regions (0.37; CI95%

0.22–0.54). The second model in Table 2 includes regional

covariates for the two hypothetical extremes of occupancy, Napo

and Branco. Despite our prior expectation, based on published soil

richness information, this model does not explain the data any

better than the single-covariate Napo model. Thus, even if the

Napo region appears to have higher palm occupancy rates, the

data do not provide strong evidence of variation in occupancy

across regions, and in particular among regions within Brazil.

Landscape models
Estimated palm occupancy is highest in rural and lowest in

urban settings, without striking differences between estimates for

different landscapes (Table 3). The models with interaction terms

(Napo*forest and Napo*rural) do not explain the data particularly

better than models without those terms. Among models with only

one landscape covariate, the best model estimates a negative effect

of urban landscapes on occupancy and lumps rural and forest

areas into one landscape class. Estimated palm infestation rates are

0.33 (CI95% 0.15–0.57) for urban and 0.63 (CI95% 0.45–0.78) for

forest/rural landscapes. Despite these broad patterns, there is no

strong evidence of landscape-level effects: AIC values vary within

less than 10 units for all models, and there is overlap of 95% CIs

for estimates of occupancy in different landscapes.

Local models
All the models that include the ‘organic score’ palm attribute

perform substantially better than the null model (Table 4). We

modeled the effects of organic score, height, and recent fire

separately and in two additive combinations (all effects and the

combination of height and organic score) after preliminary

analyses suggested that recent fire was the least important of the

three covariates. AIC variation across models indicates that height

and organic score are indeed most useful to explain the data. A

model with all covariates does not rank any better than the model

with height and organic score alone. When the three covariates are

modeled separately, organic score ranks better than height, which,

in turn, ranks better than fire. The strength of these relationships

between infestation and individual palm traits is at odds with

expectations under random bug migration among palms within a

given site, indicating that the assumption of palm independence

with regard to occupancy holds.

Chagas Disease Vector Ecology in Amazonia
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Cross-scale comparisons
Tables 2 and 3 show how regional and landscape models fall

within less than 10 AIC units of the null model, suggesting that

they do not improve our ability to explain the data when

compared with a model lacking occupancy covariates. Con-

versely, Tables 4 and 5 show strong support for local-scale

models that use palm attributes as covariates of occupancy.

Models that include regional and/or landscape covariates

jointly with palm attributes also perform substantially better

than the null model. However, these multi-scale models do not

explain the data any better than a simple local model of

occupancy as a function of organic score and palm height – the

first model of Tables 4 and 5, where both effects are positive and

significantly larger than zero (1.41, SE = 0.41; and 0.43,

SE = 0.13, respectively). Figure 3 shows occupancy estimates

according to this best-performing model. Short and ‘clean’

Attalea palms have the lowest probability of infestation, whereas

tall palms (,10 m) with plenty of accumulated organic debris

are predicted to be almost certainly infested. According to these

point estimates of occupancy by Rhodnius spp., a ‘clean’ palm

would have, at most, a 0.3 probability of infestation; this

probability would rise to over 0.5 in a palm with an organic

score close to 4. Parameter estimates for the best-ranking models

are provided as Supporting Information (Table S1).

Table 1. Rhodnius spp. in Attalea spp. palm trees in Amazonia: Entomological indices and characteristics of 298 palms surveyed in
four geographical-ecological regions.

Variable Region* Total

Napo Negro Amazon Branco

Coordinates** 0u259S 77u009W 2u509S 60u559W 3u059S 59u009W 2u259S 61u059W

Palms sampled [infested] 46 [26] 87 [14] 85 [19] 80 [13] 298 [72]

Infestation index (%) 56.5 16.1 22.4 16.3 24.2

Infestation index, traps (%) 51 9.2 14.1 12.2 18

Infestation index, manual searches (%) 100 7.9 16.5 7.5 14

Bugs captured 235 24 59 20 338

Bugs/palms sampled (M6SD) 5.11610.4 0.2860.8 0.6962.6 0.2560.7 1.1364.6

Bugs/infested palms (M6SD) [Md, Max] 9612.5 [4.5, 56] 1.761.1 [1, 4] 3.164.7 [2, 22] 1.561.2 [1, 5] 4.768.5 [2, 56]

Trap-nights 137 345 341 275 1098

Traps/palms sampled (M) 3 4 4 3.4 3.7

Palm stem height (M) [CI95%], in m 7.2 [6.7–7.7] 6 [5.6–6.4] 6.4 [6–6.7] 6.4 [6–6.8] 6.4 [6.2–6.6]

Palms in recently burned land 0 10 11 9 30

Organic score (M) [CI95%] 2 [1.75–2.16] 1.8 [1.69–1.99] 1.7 [1.62–1.88] 1.6 [1.47–1.73] 1.8 [1.69–1.84]

Organic score (Md) 2 1.75 1.75 1.5 1.75

Palms sampled (forest/rural/urban) 21/17/8 28/48/11 5/42/38 22/42/16 76/149/73

*xsAs defined in the text.
**Approximate geographic coordinates of the central area of each study region.
M = mean; SD = standard deviation; Md = median; Max = maximum; CI95% = 95% confidence interval.
doi:10.1371/journal.pntd.0000620.t001

Table 2. Regional-scale models of Attalea palm occupancy by Rhodnius spp. in four sampling areas in Amazonia.

Model k DAIC wi ŷyNapo ŷyBranco ŷy:

y(Napo), p(manual+Napo) 5 0 0.399 0.6860.09 - 0.3760.08

y(Napo+Branco), p(manual+Napo) 6 1.87 0.157 0.6860.09 0.3460.11 0.3860.09

y(.), p(manual+Napo) 4 2.29 0.127 - - 0.5960.09

y(Negro), p(manual+Napo) 5 2.71 0.103 - - 0.6060.08

y(Region), p(manual+Napo) 7 2.83 0.097 0.6860.09 0.3460.11 -

y(Branco), p(manual+Napo) 5 3.61 0.066 - 0.4860.15 0.6060.09

y(Amazon), p(manual+Napo) 5 4.11 0.051 - - 0.5960.09

Models include different combinations of covariates of Attalea palm occupancy by Rhodnius spp. at the regional scale. Model structure and covariates are defined in the
Methods section. ‘Region’ denotes a model where all four regions differ from each other in occupancy; ŷyNapo and ŷyBranco show occupancy estimates for the Napo and
Branco regions, respectively. We show these two regions only because they represent extremes of soil fertility. ŷy: gives an average estimate of occupancy probability
that applies to all regions not named as covariates of occupancy; thus, the exact meaning of ŷy: changes between models. In the models of occupancy in individual
regions, ŷy: represents the average occupancy probability across all regions. DAIC is the variation in Akaike Information Criterion values relative to the best model (in
first row); wi is the Akaike weight, a normalized likelihood of the model; and k is the number of model parameters.
doi:10.1371/journal.pntd.0000620.t002
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Discussion

A coherent view of the epidemiology of Chagas disease in

Amazonia is currently emerging; discrete foci of relatively intense

transmission, related to large-scale harvesting or consumption of

forest products, seem to punctuate a widespread background

pattern of low-intensity, vector-borne transmission [15–17]. Faced

with the logistical impossibility of full geographical coverage,

surveillance systems rely on a combination of two strategies: (i)

detection of acute, febrile cases of the disease through existing

health services (malaria posts and the regular health care network),

and (ii) identification of higher-risk areas or situations that can be

targeted through localized control and prevention efforts [37]. The

first strategy is limited by the low sensitivity of clinical diagnosis

[2,38]; the detection of T. cruzi in malaria blood smears depends

on the levels of parasitemia and requires skilled technicians. The

second approach demands a clear understanding of the environ-

mental circumstances that signal a higher risk of disease

transmission. We focus on this second option, using the

quantification of vector occurrence as a proxy for epidemiological

risk and modeling palm occupancy by vectors as a function of

environmental covariates over three spatial scales. To the best of

our knowledge, this is the first attempt to develop quantitative

models relating environmental factors to the occurrence of

triatomine vectors in Amazonia.

Had we measured palm infestation as the percentage of palms

where bugs were detected [9], we would report an infestation

index of 24.2% (72 out of 298 palms; Table 1). Instead, we

explicitly considered the possibility that bug detection fails in some

palms that are actually infested, and derived an unbiased estimate

of palm occupancy that is twice as high as the classical infestation

index. This hierarchical strategy of modeling occupancy and

detection as separate but inter-related processes stems from

methods developed for estimating animal population parameters

under imperfect detection [25,33,34], and is particularly useful

when target organisms are of small size, dull-colored, and secretive

(see Box 1). Many human disease vectors match this description,

and most triatomine species surely do. Vector population studies

that disregard the imperfections of the sampling process are likely

to yield biased conclusions that may result in flawed recommen-

dations for disease control and surveillance [see 39,40].

It must be noted that environmental constraints not included in

our analyses could also modify palm occupancy. For instance, bug

populations are under the influence of seasonality, predation

pressure, and host availability. The efficacy of live-bait traps may

vary with the nutritional status of the bugs, their aggressiveness or

the performance of adhesive tapes under different weather

conditions. Thus, while our models provide a simple and

informative explanation of the data at hand, a more detailed

assessment of triatomine population ecology and T. cruzi

transmission dynamics in Amazonia will require the measurement

and analysis of additional covariates.

Our data contain indirect information on vector abundance

that is reflected in the estimates of detection probability [41]. The

high estimates of detection probabilities in the Napo region

(,0.55 vs. ,0.08 elsewhere) match our field observation of

relatively larger numbers of bugs per occupied palm (9.04 vs. 2.24

in Brazil); this suggests a possible relation between soil fertility

Table 3. Landscape-scale models of Attalea palm occupancy by Rhodnius spp. in four sampling areas in Amazonia.

Model k DAIC wi ŷyRural ŷyUrban ŷy:

y(Ld+Napo*forest), p(manual+Napo) 8 0 0.374 0.4260.09 0.1760.07 -

y(Region+Ld), p(manual+Napo) 9 1.66 0.163 - - -

y(urban), p(manual+Napo) 5 1.91 0.144 - 0.3360.11 0.6360.09

y(Ld+Napo*rural), p(manual+Napo) 8 2.21 0.124 0.4360.10 0.2060.08 -

y(Ld), p(manual+Napo) 6 3.13 0.078 0.6960.12 0.3460.12 -

y(rural), p(manual+Napo) 5 3.43 0.067 0.7260.12 - 0.5160.09

y(.), p(manual+Napo) 4 4.71 0.035 - - 0.5960.09

y(forest), p(manual+Napo) 5 6.68 0.013 - - 0.6160.11

Models include different combinations of covariates of Attalea palm occupancy by Rhodnius spp. at the landscape scale. Model structure and covariates are defined in
the Methods section. ‘Ld’ designates a model where all three landscape classes have different occupancies, while ‘Region+Ld’ denotes the full additive occupancy
model with all regions and all landscapes. The operator ‘*’ indicates an interaction between regional and landscape covariates. The notation ŷy: shows estimates of y
that apply to all landscape classes not mentioned in the occupancy model name; its exact meaning changes between models. DAIC is the variation in Akaike
Information Criterion values relative to the best model (in first row); wi is the Akaike weight, a normalized likelihood of the model; and k is the number of model
parameters.
doi:10.1371/journal.pntd.0000620.t003

Table 4. Local-scale models of Attalea palm occupancy by
Rhodnius spp. in four sampling areas in Amazonia.

Model k DAIC wi

y(score+height), p(manual+Napo) 6 0 0.473

y(Lc), p(manual+Napo) 7 0.80 0.317

y(Ld+Lc), p(manual+Napo) 9 2.58 0.130

y(R+Lc), p(manual+Napo) 10 4.84 0.042

y(R+Ld+Lc), p(manual+Napo) 12 5.44 0.031

y(score), p(manual+Napo) 5 10.06 0.003

y(score+fire), p(manual+Napo) 6 10.50 0.003

y(height), p(manual+Napo) 5 14.01 0.001

y(fire), p(manual+Napo) 5 25.58 0.000

y(.), p(manual+Napo) 4 26.27 0.000

Models include different combinations of covariates of Attalea palm occupancy
by Rhodnius spp. at the local scale. Model structure and covariates are defined
in the Methods section. ‘Lc’, ‘Ld’, and ‘R’ stand for the full additive models of
palm attributes (score, height, and fire), landscape, and region, respectively. The
occupancy model ‘R+Ld+Lc’ combines additive effects from all spatial scales.
DAIC is the variation in Akaike Information Criterion values relative to the best
model (in first row); wi is the Akaike weight, a normalized likelihood of the
model; and k is the number of model parameters.
doi:10.1371/journal.pntd.0000620.t004
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and bug density, perhaps mediated by higher primary produc-

tivity in rich-soil ecosystems. Whether this relation holds and has

any public health relevance in other Amazonian fertile-soil

regions is still an open question. It must be noted, however, that

the prevalence of human T. cruzi infection in the Ecuadorian

Amazon, including our Napo survey area, is substantially higher

(2.4%) than the overall estimate (,1%) for the whole Amazon

basin [16,17]. Such difference warns against using palm

occupancy as the sole metric of transmission risk, and calls for

further research to test the soil fertility-vector abundance

hypothesis. Studies of vector abundance should also investigate

how the number of bugs in a palm relates to the probability that

adult specimens fly into a nearby house [42]. There is evidence

that in denser triatomine colonies each individual has less access

to bloodmeals, and that adult bugs are more likely to start

dispersive flights when starved [43,44], but the data are still

inconclusive for sylvatic Rhodnius populations.

The effects of anthropogenic habitat disturbance on triatomine

bug populations have been discussed extensively (e.g., [9,20,42,45]);

however, the evidence to support the claim that habitat

disturbance triggers house invasion or colonization by triato-

mines is still weak. Our results show similar palm occupancy rates

in forest and rural areas, but lower occupancy in urban settings.

This suggests that palm tree Rhodnius populations can endure

moderate habitat degradation, including slash-and-burn farm-

ing, in deforested rural areas, but tend to become rarer in heavily

disturbed urban landscapes. Such endurance may sustain the risk

of vector-human contact in rural sites, particularly when selective

deforestation respects large palm trees near houses – a common

practice across the Neotropics. We caution that our observations

about urban landscapes may not apply directly to large urban

forest fragments or to the contact zones between forests and

expanding urban settlements; triatomines are known to occur in

these environments, and may regularly enter houses near forest

edges (e.g., [19,46]).

Our data provide substantial support to previous observations

suggesting that individual palm tree attributes have a strong

influence on infestation probabilities [20,21]. The mechanisms

underlying this phenomenon have not been thoroughly investi-

gated; we hypothesize that larger and ‘dirtier’ palms constitute

better micro-environments for the bugs in terms of both structural

traits and host availability. High organic score values translate into

higher architectural complexity, resulting in more hiding and

oviposition sites, and probably help maintain stable and buffered

microclimate conditions [cf. 20]. The number of potential

vertebrate hosts available as bloodmeal sources for the bugs can

also be expected to be higher in larger palms with higher organic

score values [47], where more hiding/nesting sites, and often also

fruits and seeds, are available. Our hypothesis predicts that a

Rhodnius population infesting a large, dirty palm tree has less

Table 5. The complete set of 23 a priori models of Attalea
palm occupancy by Rhodnius spp. in four sampling areas in
Amazonia: cross-scale comparisons.

Model Scale AIC DAIC wi k

y(score+height), p(manual+Napo) Lc 594.86 0.00 0.4732 6

y(Lc), p(manual+Napo) Lc 595.66 0.80 0.3172 7

y(Ld+Lc), p(manual+Napo) Lc+Ld 597.44 2.58 0.1303 9

y(R+Lc), p(manual+Napo) Lc+R 599.70 4.84 0.0421 10

y(R+Ld+Lc), p(manual+Napo) Lc+Ld+R 600.30 5.44 0.0312 12

y(score), p(manual+Napo) Lc 604.92 10.06 0.0031 5

y(score+fire), p(manual+Napo) Lc 605.36 10.50 0.0025 6

y(height), p(manual+Napo) Lc 608.87 14.01 0.0004 5

y(Ld+Napo*forest),
p(manual+Napo)

Ld*R 616.42 21.56 0.0000 8

y(R+Ld), p(manual+Napo) Ld+R 618.08 23.22 0.0000 9

y(urban), p(manual+Napo) Ld 618.33 23.47 0.0000 5

y(Ld+Napo*rural), p(manual+Napo) Ld*R 618.63 23.77 0.0000 8

y(Napo), p(manual+Napo) R 618.84 23.98 0.0000 5

y(Ld), p(manual+Napo) Ld 619.55 24.69 0.0000 6

y(rural), p(manual+Napo) Ld 619.85 24.99 0.0000 5

y(fire), p(manual+Napo) Lc 620.44 25.58 0.0000 5

y(Napo+Branco), p(manual+Napo) R 620.71 25.85 0.0000 6

y(.), p(manual+Napo) (null) 621.13 26.27 0.0000 4

y(Negro), p(manual+Napo) R 621.55 26.69 0.0000 5

y(R), p(manual+Napo) R 621.67 26.81 0.0000 7

y(Branco), p(manual+Napo) R 622.45 27.59 0.0000 5

y(Amazon), p(manual+Napo) R 622.95 28.09 0.0000 5

y(forest), p(manual+Napo) Ld 623.10 28.24 0.0000 5

Models include different combinations of covariates of Attalea palm occupancy
by Rhodnius spp. at the local (Lc), landscape (Ld), and regional (R) scales. Model
structure and covariates are defined in the Methods section. ‘R’ appears as a
covariate of occupancy in models where occupancy differs among all four
regions, ‘Ld’ in models where occupancy differs among all three landscape
classes, and ‘Lc’ in models with occupancy varying as a function of palm
attributes (organic score, stem height, and fire). The operators ‘+’ and ‘*’
indicate additive models and models with interactions, respectively. AIC is the
Akaike Information Criterion; DAIC is the variation in AIC relative to the best
model (in first row); wi is the Akaike weight, a normalized likelihood of the
model; and k is the number of model parameters. All models above the dotted
line include both palm organic score and stem height as covariates of palm
occupancy; all models above the dashed line include organic score as a
covariate of occupancy. The null model (with no covariates of occupancy) is
identified as ‘‘(null)’’.
doi:10.1371/journal.pntd.0000620.t005

Figure 3. Estimates of Attalea palm tree occupancy by Rhodnius
spp. as a function of palm tree height and organic score under
the best performing model.
doi:10.1371/journal.pntd.0000620.g003
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chances of going extinct than a population infesting a small, clean

palm. This hypothesis may be tested with a patch occupancy

dynamics study [48].

Conclusions
This paper highlights the importance of accounting for

imperfect detection in the study of vector ecology; in addition,

our assessment of the explanatory power of regional, landscape,

and local environmental covariates aimed at identifying those that

hold more promise for improving vector surveillance and control

strategies [49,50].

Our results are relatively discouraging with regard to broad-

scale risk mapping; the use of soil richness datasets seems

attractive, but prior validation studies are necessary. On the other

hand, local-scale covariates are overwhelmingly more useful than

regional or landscape features in explaining variations in palm

occupancy. This suggests that the assessment of potential disease

risk situations will require detailed knowledge of local, site-specific

conditions. The participation of decentralized vector control teams

linked to local malaria control services [16,37] may therefore be

key to the advancement of Chagas disease prevention in

Amazonia. Our results also suggest that peridomestic palm tree

management could lower palm infestation rates and, therefore,

might help reduce transmission risk [21]. Model-predicted effects

of removing organic debris from palms range from halving to

reducing palm infestation probability by more than 70% (Fig. 3).

This result indicates correlation, not necessarily causation, but

provides a clear-cut working hypothesis that can be put to test in

the context of environmental management research.

Imperfect detection of the target organism is a real and

pervasive problem both in wildlife management and in epidemi-

ology. Wildlife biologists often use sampling strategies (e.g., [51])

and analytical tools [52,53] that yield unbiased parameter

estimates under imperfect detection. Latent class analysis and

capture-recapture approaches are used to formally account for

detection failure in epidemiological studies; they allow estimation

of prevalence or incidence rates when a diagnostic gold standard is

unavailable or undercount of disease events is likely (e.g., [54–58]).

Even if the contribution of these and similar approaches is

growing, we still find that many epidemiological and most vector

ecology studies simply overlook the problem of imperfect

detection.

Here we show how replicate sampling of vector ecotopes with

a practical, yet imperfect field methodology can be used to (i)

derive unbiased statistical estimates of eco-epidemiological

parameters and (ii) test hypotheses about the effects of

environmental covariates on such parameters. As long as model

assumptions (e.g., population closure or independent detection

histories) hold reasonably and study design is adequate, this

strategy can help enhance research on vectors, pathogens, and

hosts (see Box 1). For instance, replicate malaria blood smears

could be used to measure between-slide variation in Plasmodium

spp. detection. The same reasoning applies to vector surveillance

schemes with replicate sampling, e.g., of Aedes aegypti [59], or

when pathogen diagnosis involves serial testing, e.g., for

intestinal parasites [60]. The generality of our methodological

proposal is particularly compelling in the case of vector-borne

zoonotic diseases, which are those more likely to become

emerging public health threats [61], but the formal treatment

of imperfect detection can significantly strengthen other areas of

eco-epidemiological research.
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Box 1. Modeling Occupancy under Imperfect
Detection: Practical Guidelines

1. Defining an occupancy problem. Ensure that the
study system is usefully portrayed as a set of spatially
discrete sampling units (e.g., households, persons) that
may or may not be occupied by the organism of interest
(e.g., infested, infected) at a given time.

2. Is imperfect detection involved? Estimating occu-
pancy with imperfect detection makes sense only if there
is a non-negligible chance that the target organism is not
seen in a sampling unit where it actually occurs (i.e., get
‘false-negative’ results). Detection failure may not be-
come apparent until the same unit is repeatedly
sampled; in practice, most organisms are detected
imperfectly.

3. Temporal scope of replication. If the goal is
estimating occupancy at one point in time, sampling
units must not change their occupancy status during the
sampling period. To ensure the fulfillment of this
‘‘closure’’ assumption, repeated sampling must take
place within a sufficiently short time-frame that will
depend on the mobility of the target organism relative to
sampling units. When temporal variation is of interest,
replication in pre-defined short periods across years or
seasons must follow the same rules as the single-period
sampling. For detailed guidelines on sampling design,
see ref. [62].

4. Model specification. Models must embody alternative
hypothetical, plausible explanations of the biological
data and sampling process at hand. Each model is
specified as a combination of covariates that can
influence occupancy and/or detection probabilities. The
analyses will identify which hypothetical explanation is
best supported by the data.

5. Model selection. The Akaike Information Criterion (AIC)
is frequently used for model selection; it favors the best
compromise between model fit to the data and
simplicity of the hypothetical explanation as measured
by the number of model parameters [36,63]. In our case,
model selection was instrumental in understanding the
importance of local environmental factors to palm
occupancy by triatomine bugs.

6. Parameter estimation. Te final step is to estimate the
parameters for each model. We did this in a maximum-
likelihood framework as described in refs. [24,25]. Our
approach is easily implemented using PRESENCE [35],
where you can estimate occupancy and detection
parameters as well as the magnitude of covariate effects.
For complex problems requiring more analytical flexibil-
ity, a Bayesian framework may be preferable [53]. Royle
and Dorazio [33] provide a comprehensive introduction
to Bayesian hierarchical analyses; the free R and WinBUGS
software packages implement these methods.
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