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Abstract Tropical mountains have a long history of

human occupation, and although vulnerable to bio-

logical invasions, have received minimal attention in

the literature. Understanding invasive pest dynamics

in socio-ecological, agricultural landscapes, like the

tropical Andes, is a challenging but timely issue for

ecologists as it may provide developing countries with

new tools to face increasing threats posed by these

organisms. In this work, road rehabilitation into a

remote valley of the Ecuadorian Andes constituted a

natural experiment to study the spatial propagation of

an invasive potato tuber moth into a previously non-

infested agricultural landscape. We used a cellular

automaton to model moth spatio-temporal dynamics.

Integrating real-world variables in the model allowed

us to examine the relative influence of environmental

versus social landscape heterogeneity on moth prop-

agation. We focused on two types of anthropogenic

activities: (1) the presence and spatial distribution of

traditional crop storage structures that modify local

microclimate, and (2) long-distance dispersal (LDD)

of moths by human-induced transportation. Data from

participatory monitoring of pest invasion into the

valley and from a larger-scale field survey on the

Ecuadorian Andes allowed us to validate our model

against actual presence/absence records. Our simula-

tions revealed that high density and a clumped

distribution of storage structures had a positive effect

on moth invasion by modifying the temperature of the

landscape, and that passive, LDD enhanced moth

invasion. Model validation showed that including

human influence produced more precise and realistic

simulations. We provide a powerful and widely

applicable methodological framework that stresses

the crucial importance of integrating the social

landscape to develop accurate invasion models of pest

dynamics in complex, agricultural systems.
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V. Crespo-Pérez � F. Rebaudo � J.-F. Silvain � O. Dangles

University Paris-Sud 11, 91405 Orsay Cedex, France
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Introduction

Biological invasion success depends on a sequence of

complex interactions between the invader and the

recipient ecosystem (Richardson and Pysek 2006).

Physical and biological characteristics of landscapes

affect their invasibility (i.e. their susceptibility to

colonization and establishment of invaders, Davies

et al. 2005). Mountain ecosystems are characterized

by a high heterogeneity and strong environmental

gradients (Körner 2007) that influence the probability

of invasion by non-native organisms, especially of

ectotherms such as insects (Dangles et al. 2008). High

elevation, associated with harsh environmental con-

ditions, high isolation, and low human population

densities, makes mountainous environments less sus-

ceptible to invasions (MA 2003). However, changes in

these patterns, notably due to anthropogenic activities,

may reduce mountains’ resistance to non-native

spread (Pauchard et al. 2009).

Unlike the more pristine temperate mountains,

mountains in the tropics are commonly subject to

human occupation and disturbance, and are often

dominated by land uses associated with agriculture

(Nyssen et al. 2009). Although highly vulnerable to

invasions, scientific studies on the dynamics of exotic

spread in these ecosystems are rare. Most of the

literature comes from temperate regions, but patterns

observed there can seldom be extrapolated to the

tropics where an unmarked seasonality causes daily

climate variations to be more important than yearly

ones and allows organisms to be active all year round

(Dangles et al. 2008). Understanding invasive pest

dynamics in these ecosystems is a timely issue for

ecologists, as it may provide developing countries

with new tools to face increasing threats posed by

these organisms. Simulating non-native spread in such

heterogeneous environments, while accounting for the

influence of anthropogenic activity, is a challenging

task which forcefully necessitates a landscape per-

spective, capable of exploring population dynamics

both temporally and spatially (Sebert-Cuvillier et al.

2008).

An increasingly growing range of methodologies

are available for describing population spread (for

reviews see Hastings et al. 2005 and Jongejans et al.

2008). Spatial structure has been integrated into

several types of models, such as patch-based meta-

population models (Moilanen 1999; Hanski et al.

2000), stochastic patch occupancy models (SPOMs;

Moilanen 2004), individual based models (IBMs;

Goslee et al. 2006; Nehrbass et al. 2007; Harris et al.

2009; Carrasco et al. 2010; Travis et al. 2010; Travis

et al. 2011), and cellular automata (CA) models

(Soons et al. 2005; Herben et al. 2006). An advantage

of IBMs and CA is that they may integrate spatial

heterogeneity, stochasticity and ecological processes,

allowing predictions to be made about the direction

and the rate of spread (Jongejans et al. 2008; Cacho

et al. 2010).

The general ecological theory behind invasion

processes is relatively well understood (Cadotte

et al. 2006). Lately there has been great progress in

simulating the spatial spread of invasive organisms

(Harris et al. 2009; Anderson et al. 2010; Carrasco

et al. 2010; Miller and Tenhumberg 2010; Shea et al.

2010; Travis et al. 2011), but several methodological

challenges remain to effectively model these pro-

cesses in complex socio-ecological landscapes in the

tropics. In particular, few attempts have been made to

combine, in a single approach, various human-med-

iated effects on the spatio-temporal propagation of an

invading pest population and to quantify their relative

importance (but see Prasad et al. 2010 in North

America). Even scarcer are the field data, especially in

tropical countries, required to validate the dynamics in

invasion processes. In this contribution we address the

issue of modeling exotic pest invasion in the tropical

Andes, a region transformed by anthropogenic sys-

tems into a mosaic of agro-ecosystems at different

stages of succession and different levels of human

influence (Ellenberg 1979). Propagation of invasive

species may be facilitated by intensified road con-

struction that reduces the naturally high isolation and

low connectivity of mountain environments (Pauchard

et al. 2009). In our case, road rehabilitation into an

isolated valley constituted an exceptional natural

experiment to study the propagation into a previously

non-infested landscape of the potato tuber moth (Tecia

solanivora, Povolny, Lepidoptera: Gelechiidae).

Actual moth propagation data obtained through par-

ticipatory monitoring (Dangles et al. 2010) suggested

that the speed of the invasion in the valley was not

possible through diffusion dispersal only, given that

tuber moths are weak fliers (Cameron et al. 2002;

Mesı́as and Dangles, pers. obs.). The specific aim of

our study was therefore to investigate the role of

human activity on the spatio-temporal invasion
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dynamics of an emerging agricultural pest. For this,

we employed a spatially explicit, CA model that

accounted for the influence of crop storage structures

that modify the thermal environment for the pest

(Dangles et al. 2008) and of passive, long-distance

transport of insects in human vehicles. Our study

showed how pest colonization and propagation on

mountainous agricultural landscapes in the tropics are

influenced by these human activities, and that they

should be acknowledged when designing pest man-

agement strategies. While we exclusively focus on

potato moths in the tropical Andes in this paper, our

approach is applicable to a much wider geographic

range (most agricultural ecosystems) and to introduc-

tions of other ectothermic organisms.

Materials and methods

Study organism and site

The Guatemalan potato tuber moth, Tecia solanivora, is

an invasive pest whose larvae attack exclusively Sola-

num tuberosum L. tubers both in the field and in potato

stocks. T. solanivora has been successfully invading the

northern Andes within the last 30 years (Puillandre et al.

2008). During the last decade it has been considered one

of the major pests for potatoes in Central American and

Northern South American countries (Dangles et al.

2009). Infestation is often highest (up to 90%) in

traditional potato storage structures (tubers heaped

under a basic shelter), which offer optimal conditions

for moth development (Dangles et al. 2008).

We studied the spatio-temporal expansion of T.

solanivora in the valley of Simiatug (Central Ecuador,

Fig. 1a) which constitutes a prime example to under-

stand species invasion dynamics. Before 2005 moth

introduction and propagation into the valley was

virtually impossible because of two reasons. First, it is

surrounded by large areas of natural páramos (herba-

ceous ecosystems of high altitude, mainly above

3,800 m) and natural or cultivated forests, all unsuit-

able for moth survival (Fig. 1b). Second, due to the

lack of roads, commercial activities with villages

outside the valley were limited. In 2006 road sections

from Guaranda northward to Salinas were rehabili-

tated enhancing commercial exchanges and allowing

T. solanivora’s arrival and propagation (Dangles et al.

2010) (Fig. 1b).

Altitudes of the Simiatug valley range from 2,800

to 4,250 m (Fig. 1c). Its climatic conditions are typical

of the Ecuadorian Andes where mean temperatures

vary more with altitude than with season (Fig. 1d)

(Dangles et al. 2008). Diurnal temperatures vary

dramatically and the pattern of hot days and cold

nights overshadows temperature variations through

the year. Rainfall also shows little seasonality and

varies on a local basis (see climate graphs in Dangles

et al. 2008, Appendix A, http://www.esapubs.org/

archive/appl/A018/062/appendix-A.htm). Such stable

climatic conditions permit potatoes to be grown all

year, and cause the agricultural landscape to be made

up of a mosaic of potato fields at various stages of

maturation. This, along with the presence of stored

potato tubers in traditional shelters, means that food

for moth larvae is always available. These conditions

likely explain why neither diapause nor seasonal

rhythms have been reported for this species at any

elevation in Ecuador and imply that its thermal limits

and population dynamics are defined spatially rather

than seasonally (Dangles et al. 2008). About 25,000

people, mainly subsistence and market-oriented

farmers, currently live in the Simiatug parish in about

45 Kichwa communities or in scattered houses across

the territory. With approximately 3,000 inhabitants,

Simiatug village is the economic center of the valley

and the communities around are smaller in size and

density (50–700 inhabitants) (for further detail see

Dangles et al. 2010).

The model

Overall structure

Potato moth dynamics were simulated with a spatially

explicit, stage-structured, CA model, based on bio-

logical and ecological rules derived from field and

laboratory data of T. solanivora’s physiological

responses to climate (temperature and rainfall). Our

simulations focused on a study area of 20 9 20 km

within the valley (Fig. 1b) represented by a grid of

1,600 cells with a cell size of 0.25 km2. Each cell of

the grid is characterized by environmental variables

such as temperature, precipitation, land use and the

presence and size of villages (Fig. 1e) (MAE and

EcoCiencia 2005; Hijmans et al. 2005). Cell size was

selected to match the resolution at which land use data

were available.
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Model formulation

In this section we briefly describe our model’s formu-

lation. For more detail see Appendix S1 in Supplemen-

tary material. Our model’s setup consisted of an initial

inoculum of 90 moths in Simiatug village, the main

source of moth infestation in the region (Dangles et al.

2010). The choice of this inoculum was based on

measurements by our team of moth abundance in

infested potato sacks. However, sensitivity analysis

showed that varying this parameter had no effect on

model output (see Appendix B in Rebaudo et al. 2010).

Each time step represented one T. solanivora generation

(normalized to 3 months at 15�C). During each step we

used a stage-structured model (Briggs and Godfray

1996; Miller 2007) to describe moth population dynam-

ics in each cell. Three biological processes governed

these dynamics: survival (both demographically based

and climate dependent) between each consecutive stage,

dispersal through diffusion (density dependent) and

reproduction (climate dependent). Each time step the

infestation grew and spread over farmers’ fields.

An important assumption of our CA is maximum

moth passive dispersal distance. We are not aware of

any empirical data on T. solanivora’s flight capacity.

We therefore used data of a related moth, Phthorimaea

operculella (Gelechiidae), the only published data we

are aware of. However, even for P. operculella, there

is little and contradictory information regarding its

flight abilities, with some studies describing these

moths as good fliers (Yathom 1968; Foley 1985) and

others reporting limited flight abilities (Fenemore

1988). In two separate studies, Cameron et al. (2002,

2009) reported that these moths could fly up to 250 m.

We therefore used this value for our maximum

dispersal distance parameter. Comparative observa-

tions by our team of flight capabilities between P.

operculella and T. solanivora in Ecuador revealed that

the latter is a much worse flier than the former and we

thus considered that we did not underestimate T.

solanivora’s dispersal ability. Furthermore, a closer

look at T. solanivora’s propagation into the Simiatug

valley revealed that in order to predict the observed

pattern of invasion without long distance dispersal,

moths would have to fly about 1.5 km per generation,

a value six times higher than the one chosen for our

parameter.

To avoid populations growing to unmanageable

sizes we set adult moth carrying capacity of each cell

to 1,000 individuals. This value corresponds to the

Fig. 1 Map of the study

area showing a the location

of the Simiatug Valley in the

central Ecuadorian Andes;

b land use in the area

showing the specific area of

20 9 20 km of our cellular

automaton (black square);

c elevation of the cells of our

grid; d mean yearly

temperature of the last

30 years of the study area;

and e villages in the study

area. See Fig. 4 for known

moth distribution in the

Simiatug valley from 2006

to 2009)
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highest number of moths ever collected in the

Ecuadorian Andes by the staff of the Laboratory of

Entomology of the PUCE in an area of 250 m of

radius, the action range of pheromone traps (Barragán

comm. pers.). Furthermore, it lies within the range of

observed densities of adults of other Gelechiidae (see

Rothschild 1986 and references therein). To ensure

that this did not impact our results we ran a sensitivity

analysis where carrying capacity was varied and found

that this parameter had no effect on dispersal speed but

had a strong effect on population growth (results not

shown, but see Appendix B in Rebaudo et al. 2010).

However, since our output was expressed as ‘‘relative

moth abundance’’ (see ‘‘Analysis of moth propaga-

tion’’ section), results were not affected by the

carrying capacity.

We built on this basic scenario to incorporate the

effects of two key farmer activities on moth propaga-

tion identified in previous studies: (1) changes in

microclimatic conditions due to presence of potato

storage structures (Dangles et al. 2008), and (2) long-

distance dispersal (LDD) events through passive moth

transportation in human vehicles (Dangles et al. 2010).

Potato storage structure scenario

Potato storage structures have been shown to buffer

extreme air temperatures (see Dangles et al. 2008,

Appendix D), changing the thermal environment of

the growing larvae. To further understand the impor-

tance of these structures for moth invasion dynamics,

we surveyed temperature conditions inside and outside

potato storage structures using data-loggers (HOBO�

U12, Onset Computer Corporation, Pocasset, MA,

USA). For details see Appendix S2 in Supplementary

material.

To examine the influence of storage structures on

moth dynamics we located structures in 0, 15, 30, 45,

60, 75 or 90% of the cells of the CA, with three

different types of spatial distribution (aggregated,

random, and regular). Several procedures are available

to generate particular point patterns in a two dimen-

sional space (Wu et al. 1987; Diggle 2003; Perry

2004). We used the R ‘‘spatstat’’ package which

allows the creation of point patterns with distributions

from aggregated, through random to regular (Badde-

ley and Turner 2005). We generated the aggregated

distribution, using a Neyman–Scott process with the

‘‘rneymanscott’’ function, the random distribution

with a homogenous Poisson process, using the func-

tion ‘‘rpoispp’’, and the regular distribution with a

Simple Sequential Inhibition (SSI) process with the

‘‘rSSI’’ function.

To characterize the general form of the inside-

outside temperature relationship (Fig. 1 of Appendix

S2) we fitted the data to a linear and three non linear

functions (log, power and hyperbole). The linear

relationship gave the best overall fitting performance

and was thus used to modify the temperature of cells

with storage structures as follows:

TSi ¼ aTOi þ b ð1Þ

where TSi is temperature inside the storage structure at

cell i and TOi is mean outside air temperature of that

cell. The values of parameters a and b depend on cell

altitude (see Table 1 of Appendix S2).

Long-distance dispersal scenario

Long-distance dispersal through human transportation

of potato tubers, re-used potato bags and infested soil

(using motorized vehicles, donkeys, or llamas as

transportation agents) constitutes a key mechanism for

potato moth spread in the Andes (EPPO 2005; Dangles

et al. 2010). LDD was included in our CA by using a

gravity model. These models are a common tool,

mainly used by geographers, which allow the estima-

tion of LDD between discrete points in heterogeneous

landscapes (Bossenbroek et al. 2001). They relate the

interaction strength between a discrete invading

source and an invaded destination and calculate the

flow of individuals that move from one to the other

(Muirhead et al. 2006). Following the approach

developed by Bossenbroek et al. (2001) we modeled

the probability of moths jumping from an infested

village i to an uninfested one j (Pi?j) as follows:

Pi!j ¼
X26

i¼1

Wi � gi½ � � Wj

zj

� �
ð2Þ

where the first factor represents the probability of a

vehicle carrying infested potatoes leaving an infested

village, and the second one represents the attractive-

ness of a non-infested village (note that there were 26

villages in our study area). The first factor is

influenced by village size (human population relative

to that of Simiatug village, Wi = Pop/3,000) and the

relative abundance of moths (gi) in that cell (relative to

Landscape Ecol (2011) 26:1447–1461 1451

123



cell carrying capacity, i.e. 1,000). The second factor is

influenced by village size (Gilbert et al. 2004) and

relative remoteness (zj). Remoteness was calculated as

the total time to travel from one village to all the others

(Dangles et al. 2010). Each village had its own relative

remoteness value (zj) which was obtained by dividing

village remoteness by the value of the most remote

village. We chose not to include distance between

villages in the equation since the probability of

farmers visiting a village depends on the time it takes

for them to get there (which is influenced by the

existence and quality of roads) rather than on actual

distance. Establishment (sensu Liebhold and Tobin

2008) in a newly invaded cell depends on the

environmental characteristics of the sink cell. Thus,

moths have some probability of arriving to any cell

with a village but the probability of them establishing

there depends on the climate and the presence or

absence of potato cultures in it. As the invasion

evolves more villages become infested and the number

of moths in each increases. As a consequence, the

probability of moths dispersing to uninfested villages

also increases.

As the success of an invading population is known

to be highly affected by the number of propagules

which is involved in the LDD event (see the notion of

‘‘propagule size’’ effect in Liebhold and Tobin 2008),

the importance of LDD for invasion dynamics was

assessed by varying the number of moths potentially

jumping from one village to another during each time

step of the CA. Simulations were performed for

propagule sizes of 0, 10, 20, 40, 80, 160, 320, or 640

juvenile moths.

In this contribution we assumed that propagule size

was fixed in each simulation (i.e. the number of moths

that jumped was the same during each LDD jump).

This is not the case in reality where the number of

organisms that disperse varies between each dispersal

event (Liebhold and Tobin 2008). An interesting

future research perspective would therefore be to

analyze the effect that varying the size of the

propagule during each inter-village transfer has on

model output.

Analysis of moth propagation

The model allows simulating moth propagation in the

study area through time. (Figure 2a–c shows captions

of CA grids with the temporal evolution of T.

solanivora levels at three different steps of the

invasion process.) As model output, we were inter-

ested in the progression of moth relative abundance

and of the proportion of invaded area through time

(black and gray curves of Fig. 2d, respectively). Since

both types of output presented similar results we will

refer only to moth abundance data in the following.

Model output was adjusted to the following sigmoid

function (Hufkens et al. 2008) as follows:

nðtÞ ¼ x

1þ e�hðt�rÞ ð3Þ

where x represents the proportion of moths (relative to

the total carrying capacity of the model, i.e. 1,600,000

moths) where the invasion stabilizes, h the steepness

of the curve (i.e. invasion speed) and r the generation

at the invasion’s mid-point (Fig. 2e). Parameters were

estimated with the ‘‘nls’’ function in the ‘‘stats’’

package of R (R Development Core Team 2009

version 2.10).

We used boosted regression trees, BRT (Elith et al.

2008; Buston and Elith 2011; Munkemuller et al.

2011), to understand the relative contribution of each

factor on model output. For this we ran simulations

with all the possible combinations of parameters’

values among the human influence factors (i.e. we

combined the different percentages of storage struc-

tures, with the three types of storage structure spatial

distribution and with different propagule sizes). We

ran 20 simulations for each combination. Then we

adjusted Eq. 3 to model output and ran the boosted

regression tree analysis on each of the three param-

eters. BRTs were fitted in R (R Development Core

Team 2010 version 2.11.1), using gbm package

version 1.6-3.1 (Ridgeway 2010) plus custom code

that is available online (Elith et al. 2008). We

calibrated our boosted regression tree models through

a 10-fold cross validation (CV) and determined

optimal number of trees by systematically varying

values for tree complexity, tc, and learning rate, lr, and

choosing the number of trees where holdout deviance

was minimized. We used partial dependence plots to

visualize the influence of parameters on the model’s

output. These plots show the effect of a focal predictor

on the response controlling for the average effect of all

other variables in the model (for further information

on boosted regression trees and an explanation of their

parameters see Elith et al. 2008, and Buston and Elith

2011).
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Model validation with field data

Spatio-temporal validation of the invasion process

in the Simiatug valley

A four year survey of PTM abundance since the initial

introduction of the pest into the Simiatug valley in

2006 allowed us to compare the spatio-temporal

invasion simulated by our model to real data. These

data were obtained once a year from participative

monitoring with local farmers from 13 communities

located at various altitudes and distances from Sim-

iatug village (see Dangles et al. 2010). We compared

the agreement between observed data and either the

basic or the LDD scenarios’ outputs after 16 gener-

ations (i.e. 4 years), with the use of the kappa statistic

which measures the proportion of correctly predicted

presences and absences, after accounting for chance

effects (Manel et al. 2001). We further examined the

significance of kappa values under the null hypothesis

of no agreement beyond chance (Fleiss 1971). These

analyses were performed using the ‘‘PresenceAb-

sence’’ package of R (R Development Core Team

2009).

Altitudinal validation in the Ecuadorian Andes

We compared moth altitudinal distribution predicted

by our model (using the altitudes of the cells infested

by T. solanivora at equilibrium) with data of the actual

distribution of the pest in the country. This analysis

allowed us to assess the validity of our model in

predicting the actual spatial distribution in agricultural

landscapes of the Ecuadorian Sierra. Data from 80

sites were obtained through a large-scale field survey

in four provinces in the center of Ecuador (Cotopaxi,

Tungurahua, Chimborazo, and Bolı́var) at altitudes

ranging from 2,300 to 3,700 m (see http://www.

innomip.com for further details on moth monitoring

in the region). At each site, the abundance of T. so-

lanivora adult males was monitored using dome traps

baited with pheromones and placed at 1 m height in

potato fields. Catches in traps were recorded every

3 weeks during at least the 10 weeks that preceded

harvest date (see Dangles et al. 2008, for further

details). We compared the observed data to the dis-

tributions of the frequencies of the altitudes of cells

with moth predicted by (1) the basic, (2) the LDD, and

(3) the LDD and storage structure scenarios combined

Fig. 2 Examples of model

outputs: a–c spatial invasion

represented by captions of

CA grids at three different

steps (t) of the invasion

process; d temporal invasion

throughout moth

generations with the relative

number of moths (N) and the

proportion of invaded area

(Area); e sigmoid wave

showing the parameters

used in the sensitivity

analysis
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(LDD ? storage) through Kolmogorov–Smirnov (K–

S) tests. We also compared the means and variances of

the distributions with a Welch Two Sample t test and

an F test, respectively. All these analyses were per-

formed with R (R Development Core Team 2009).

Results

Model exploration: influence of human practices

on moth dynamics

Influence of potato storage structures

As evidenced by the boosted regression tree analysis,

storage structure distribution had a stronger influence on

the relative number of moths at the end of the invasion

process (i.e. parameter x, Fig. 3a) with clumped

distribution allowing higher moth densities than the

two other types of distributions. Storage structure

percentage influenced moth abundance less strongly

(Fig. 3b), but analysis did show that these two variables

presented a positive relationship, with moth abundance

increasing with higher percentages of storage structures.

Contributions of each human influence factor on

parameter h were similar (Fig. 3d–f) with storage

structure distribution presenting a slightly stronger

influence than the other two. Invasion speed increased

from clumped to random and to regular distribution

(Fig. 3d). On the other hand, this parameter decreased as

storage structure percentage increased (Fig. 3e). How-

ever, these results are probably artifacts due to the fact

that with clumped distribution and with higher storage

structure percentages moth final abundance is higher, and

reaching this higher number of moths takes more time.

The generation at invasion midpoint (i.e. parameter

r) was also influenced in a similar degree by the three

parameters (Fig. 3g–i). Differences among the three

types of storage structure distribution were less

evident, with a slight decrease from clumped to

regular (Fig. 3g). Increasing storage structure per-

centage caused generation at invasion midpoint to

increase (Fig. 3h), but again this is due to the increase

in final moth abundance.

Influence of long-distance dispersal

The influence of propagule size on moth abundance

was low and did not vary among the different numbers

of moths that jumped (Fig. 3c). This was expected

since propagule size does not influence the amount of

invasible space and when the invasion stabilizes cells

have reached their carrying capacity.

Our analysis showed that including LDD jumps

accelerated the invasion process, as evidenced by the

increase in parameter h (Fig. 3f) and the decrease in r
(Fig. 3i). LDD influenced parameter r to a slightly

higher extent than the two factors related to storage

structures (Fig. 3i). However, we found that our model

was insensitive to varying propagule size. All the

difference was concentrated between simulations with

no LDD and simulations with LDD. This is probably

caused by high moth fecundity (a female moth lays

more than two hundred eggs at 15�C), as when moths

jump invaded cells soon reach their carrying capacity,

diluting initial differences in propagule size.

Model validation

Spatio-temporal validation in the Simiatug valley

The level of agreement of the basic model and LDD

scenario with field survey data at 13 villages across the

valley is shown in Fig. 4. We found that the inclusion

of LDD in our model provided a better prediction of T.

solanivora’s spatio-temporal propagation through the

Simiatug valley, as revealed by the higher values of

kappa. However, these values were significant only for

2007 and 2008. In 2009 the value of kappa is lower

because the model predicts moth presence in village 9

although they were not found during the monitoring.

The basic model did not predict moth presence in six

of the villages where the insects were found during

field monitoring. In some of them, notably villages 5

and 6, the model predicted moth presence only 4 years

after the invasion, suggesting an unrealistically slow

dispersal (Fig. 4b). In contrast, the LDD scenario was

able to predict moth presence in almost all villages

where moths were found during the monitoring

(Fig. 4c). In village 2 the LDD scenario did not

predict moth presence, and moths were not observed

during monitoring along the 4 years. This village is

unsuitable for moth survival because of the absence of

potato cultures (no suitable habitat). Village 11 was

the only one where our LDD model did not predict

moth presence even though moths were found during

the monitoring. Other small discrepancies between our

LDD model prediction and field data mainly consisted
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Fig. 3 Partial dependence plots for parameter x (a–c), h (d–f),
and r (g–i). Fitted functions have been centered by subtracting

their mean. Rug plots at the inside top of plots show the

distribution of data, in deciles, of the variable on the X-axis.

Values in parenthesis indicate relative contribution of each factor

to model output
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in a prediction of moth arrival in the villages before

they actually did arrive.

Altitudinal validation in the Ecuadorian Andes

We compared moth altitudinal distributions predicted

by our model at stable population levels with those

found under field conditions (Fig. 5). Distributions of

the basic and LDD scenarios were virtually identical

(K–S test: D = 0.08, P = 1), because LDD acceler-

ates the invasion but does not allow moths to survive

in cells with unsuitable climate. We also found that

these results were no different from the distribution

of observed data (K–S test: D = 0.38, P = 0.291),

implying no significant differences between our

predictions and field data. Distributions predicted

by the LDD and storage structure scenarios com-

bined was also not different from the observations

(K–S test: D = 0.15, P = 0.998). However, t and F

tests showed that with respect to mean and variance

the LDD plus storage structure scenario was more

similar to the observed data than the LDD and the

basic scenarios (t test P value = 0.992, 0.631, and

0.553 and F test P value = 0.942, 0.695, and 0.688,

respectively).

Discussion

Spatial heterogeneity plays a defining role in popula-

tion dynamics (Hutchings et al. 2000; Hanski and

Gaggiotti 2004), and several authors recognize the

importance of its inclusion into studies of biological

invasions (Melbourne et al. 2007; Jongejans et al.

2008; Harris et al. 2009; Carrasco et al. 2010).

Heterogeneity may be caused by variations in abiotic

factors such as temperature or precipitation, or in

biotic factors such as resource availability or the

presence of competitors (Schreiber and Lloyd-Smith

2009). Our work suggests that another type of spatial

heterogeneity, socially induced heterogeneity, is prob-

ably one of the main drivers of invasion dynamics in

agricultural landscapes.

Spatially explicit, stochastic modeling methods are

useful for simulating the influence of spatial hetero-

geneity on invasive dynamics (Nehrbass and Winkler

2007; Nehrbass et al. 2007; Travis et al. 2011). CA

models, in particular, allow including detailed infor-

mation about the landscape—making it not simply

spatially explicit, but spatially realistic (Harris et al.

2009)—and are especially useful for simulating

dynamics in landscapes with particular structures

Fig. 4 Spatio-temporal

validation of the model’s

outputs to field monitoring

data from 2006 to 2009 in

the Simiatug valley. a The

13 villages involved in the

monitoring; b outputs of the

basic model (no human

influence); c outputs of the

LDD scenario. Black circles
represent cases where moths

were observed but not

predicted by the model; gray
circles, cases where moth

presence was predicted by

the model, but no moths

were found during the field

monitoring; and white
circles, cases in which

model outputs coincided

with field data
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(Soons et al. 2005; Herben et al. 2006; Jongejans et al.

2008). In this study, incorporating real-world data

bases of environmental and social variables into the

model proved a powerful tool to simulate invasive

spread in a human-dominated landscape.

Modification of the climatic environment

by storage structures

Given the influence of temperature on insect popula-

tion dynamics, their propagation may be enhanced if

they encounter sites with suitable thermal conditions

(Régnière and Turgeon 1989). Several studies have

acknowledged the buffering capacity of storage

structures and their influence on potato tuber worm

survival (Roux and Baumgartner 1998; Hanafi 1999;

Keasar et al. 2005), but recognize that data concerning

the ambient temperature in storage structures is

lacking (Keasar et al. 2005). Our temperature surveys

helped us to better understand the actual temperature

buffering capacity of storage structures in our land-

scape. They revealed that below altitudes of 3,100 m

potato storage structures present microclimatic

conditions always favorable for infestation by T.

solanivora while above 3,100 m these structures

usually present unfavorable microclimatic conditions

(temperature inferior to field temperature and between

9 and 10�C). Our results showed that, in general,

storage structure presence increased moth abundance

and that spatial distribution of storage structures has a

strong influence on moth dynamics with a clumped

distribution being the most favorable to moth survival

and propagation. Moth’s altitudinal distribution pre-

dicted by our model when we included storage

structures was closer to the species’ actual distribution

than that predicted by the basic or LDD scenarios.

Hence, it seems that potato storage structures permit

moths to survive in sites from which they would

normally be excluded due to climatic constraints. This

result is consistent with those of Suarez et al. (2001)

and Pitt et al. (2009) who found that the invasion of the

Argentine ant, Linepithema humile, was always pos-

itively affected by the presence of human construc-

tions (notably human habitations) that allow them to

persist locally in areas with unfavorable climates.

However, we also found that a high density of storage

structures was detrimental for moth invasion above

3,100 m (results not shown), certainly due to the

persistence of cold temperatures (ca. between 9 and

10�C) within the storage structures located at such

altitudes. Since Simiatug village (where we placed the

initial inoculum) is located at 3,400 m, high storage

structure density at and around this location may

drastically slow or impede moth survival, causing a

severe decrease on the relative number of moths in

some of the simulations. This counterintuitive result

coincides with results found in a study at the Mantaro

Valley (central Peru) where farmer interviews

revealed that some high altitude storage structures

were not infested by the potato tuber moth, Symmet-

rischema tangolias, probably due to the low temper-

atures attained by these structures (Keller 2003).

Long-distance dispersal events

Our results highlight the importance of passive moth

transportation in human vehicles which allows insects

to make LDD jumps. Even though several authors

have acknowledged the significance of this type of

dispersal for species’ spread (Buchan and Padilla

1999; Bossenbroek et al. 2001; Nehrbass et al. 2007),

notably invasive insects (Suarez et al. 2001; Pitt et al.

Fig. 5 Altitudinal validation of the model’s outputs to field

monitoring data in the Ecuadorian Andes. The figure shows the

comparison between the observed altitudinal distribution in 85

sites of central Ecuador where moth abundance was sampled

between 2006 and 2009 and predicted distribution by the

model’s basic (no human influence), LDD and LDD plus storage

structure scenarios. Bars indicate 95% confidence intervals on

observed frequencies
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2009; Carrasco et al. 2010), its inclusion in models still

poses difficulties for modelers (Bossenbroek et al.

2001; Pitt et al. 2009). The failure to accurately

measure LDD events has impeded sufficient agree-

ment between model output and empirical data

(Hastings et al. 2005). Most dispersal models are

based on empirically measured rates of dispersal

which are not available for many species. Even when

such data are available, these types of models may

underestimate spread rates since they do not allow

organisms to jump over unsuitable habitat (Pitt et al.

2009). Classical metapopulation models (Hanski et al.

2000), SPOMs (Moilanen 2004) or gravity models are

suitable in such cases. The latter represent an

interesting choice for modeling LDD in the case of

species for which no data on the rate of long-distance

jumps are available. These models do not consider

movement rates by organisms themselves, but the

force of attraction between an origin and a destination

(Bossenbroek et al. 2001). Thus, they may be quite

useful to predict the spread of human-vectored organ-

isms where site ‘attractiveness’ is based on human

behavior (Gilbert et al. 2004; Carrasco et al. 2010).

Modeling T. solanivora’s long-distance jumps with

a gravity model was suitable since passive transport in

human vehicles is thought to be the means by which

these organisms attain far away sites (EPPO 2005). A

key step when using these types of models consists in

including the appropriate set of factors likely respon-

sible for the dispersal of the invasive species (Bos-

senbroek et al. 2001). In our case, including village

size and remoteness as measures of interaction force

permitted us to accurately simulate moth spread across

the valley. This reveals how social heterogeneity plays

an essential role defining the patterns of propagation of

invasive pests in human dominated landscapes.

Including the gravity model within the CA was

certainly convenient since the latter allowed us to

‘‘spatialize’’ such heterogeneity and enhanced realism

in our predictions.

In some cases, our LDD scenario over estimated

invasion speed by predicting moth dispersal to some

villages where they have not been detected with the

field monitoring or before they actually were. This

may be related to the stochastic nature of jump

dispersal events (Lewis and Pacala 2000) that we

incorporated in our model by making the probability

of LDD equal to a product of two other probabilities

(the probability of moths leaving a village by the

probability of moths arriving to another, Eq. 1).

However, as pointed out by Pitt et al. (2009) overes-

timation in such models means that they may be used

for risk assessments of invasion since they allow the

localization of invasible sites.

Potential application for invasive pest control

in tropical agricultural landscapes

Accurate predictions of pest invasion dynamics are

important for people concerned with integrated pest

management (IPM) to optimize the type, place and

timing of control measures used to minimize the

damages (Régnière et al. 2009; Shea et al. 2010;

Travis et al. 2011). Our CA model allowed us to

understand the influence of human practices on pest

propagation, and provided direct applications for

pest management such as the importance of survey-

ing farmers’ storage structures’ temperature regimes

to assess their potential role in insect persistence and

spread. A further advantage of CA models is that

they can be easily coupled with agent-based models

(Bonabeau 2002), which allows taking farmer

behavior directly into account to simulate its impact

on insect spread. Recently, we integrated our CA

with an agent-based model to assess the importance

of farmers’ mobility and pest control knowledge on

pest expansion (Rebaudo et al. 2011). Such a

coupled model was then used as an educational tool

to make farmers aware of the dangers due to the pest

and on the procedures they should follow to impede

its propagation. The flexible and upgradeable nature

of CA would make them powerful tools for ecolo-

gists to better understand invasion dynamics in the

most challenging landscapes.

Acknowledgments This work was part of the research

conducted within the project Innovative Approaches for
integrated Pest Management in changing Andes (C09-031)

funded by the McKnight Foundation. We are grateful to Jérôme
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tors: Ángel Onofa (MAE) and Malki Sáenz (EcoCiencia):
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